

BIOSERVICES: access to biological web services programmatically

[image: _images/bioservices.svg]
 [https://pypi.python.org/pypi/bioservices][image: _images/badge.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/ci.yml][image: Documentation Status]
 [http://bioservices.readthedocs.org/en/main/?badge=main][image: _images/bioservices1.svg]
 [https://pepy.tech/project/bioservices][image: _images/bioservices2_logo_256.png]
 [https://raw.githubusercontent.com/cokelaer/bioservices/main/doc/_static/bioservices2_logo_256.png]
	Python_version_available

	BioServices is tested for Python 3.7, 3.8, 3.9, 3.10

	Contributions

	Please join https://github.com/cokelaer/bioservices

	Issues

	Please use https://github.com/cokelaer/bioservices/issues

	How to cite

	Cokelaer et al. BioServices: a common Python package to access biological Web Services programmatically
Bioinformatics [http://bioinformatics.oxfordjournals.org/content/29/24/3241] (2013) 29 (24): 3241-3242

	Documentation

	RTD documentation [http://bioservices.readthedocs.io/].

Bioservices is a Python package that provides access to many Bioinformatices Web Services (e.g.,
UniProt) and a framework to easily implement Web Services wrappers (based on
WSDL/SOAP or REST protocols).

The primary goal of BioServices is to use Python as a glue language to provide
a programmatic access to several Bioinformatics Web Services. By doing so, elaboration of new
applications that combine several of the wrapped Web Services is fostered.

One of the main philosophy of BioServices is to make use of the existing
biological databases (not to re-invent new databases) and to alleviates the
needs for expertise in Web Services for the developers/users.

BioServices provides access to about 40 Web Services.

Contributors

Maintaining BioServices would not have been possible without users and contributors.
Each contribution has been an encouragement to pursue this project. Thanks to all:

[image: _images/bioservices]
 [https://github.com/cokelaer/bioservices/graphs/contributors]

Quick example

Here is a small example using the UniProt Web Service to search for the zap70 specy in human
organism:

>>> from bioservices import UniProt
>>> u = UniProt(verbose=False)
>>> data = u.search("zap70+and+taxonomy_id:9606", frmt="tsv", limit=3,
... columns="id,length,accession, gene_names")
>>> print(data)
Entry name Length Entry Gene names
ZAP70_HUMAN 619 P43403 ZAP70 SRK
B4E0E2_HUMAN 185 B4E0E2
RHOH_HUMAN 191 Q15669 RHOH ARHH TTF

Note

major changes of UniProt API changed all columns names in June 2022. The code above is valid for bioservices
versions >1.10. Earlier version used:

>>> data = u.search("zap70+and+taxonomy:9606", frmt="tab", limit=3,
... columns="entry name,length,id, genes")

Note that columns names have changed, the frmt was changed from tab to tsv
and taxonomy is now taxonomy_id. Names correspondences can be found in:

u._legacy_names

More examples and tutorials are available in the On-line documentation [http://bioservices.readthedocs.io/]

Current services

Here is the list of services available and their testing status.

	Service

	CI testing

	arrayexpress

	[image: _images/badge1.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/arrayexpress.yml]

	bigg

	[image: _images/badge2.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/bigg.yml]

	biocontainers

	[image: _images/badge3.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/biocontainers.yml]

	biodbnet

	[image: _images/badge4.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/biodbnet.yml]

	biogrid

	[image: _images/badge5.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/biogrid.yml]

	biomart

	[image: _images/badge6.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/biomart.yml]

	biomodels

	[image: _images/badge7.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/biomodels.yml]

	chebi

	[image: _images/badge8.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/chebi.yml]

	chembl

	[image: _images/badge9.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/chembl.yml]

	cog

	[image: _images/badge10.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/cog.yml]

	dbfetch

	[image: _images/badge11.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/dbfetch.yml]

	ena

	[image: _images/badge12.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/ena.yml]

	ensembl

	[image: _images/badge13.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/ensembl.yml]

	eutils

	[image: _images/badge14.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/eutils.yml]

	eva

	[image: _images/badge15.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/eva.yml]

	hgnc

	[image: _images/badge16.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/hgnc.yml]

	intact_complex

	[image: _images/badge17.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/intact_complex.yml]

	kegg

	[image: _images/badge18.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/kegg.yml]

	muscle

	[image: _images/badge19.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/muscle.yml]

	mygeneinfo

	[image: _images/badge20.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/mygeneinfo.yml]

	ncbiblast

	[image: _images/badge21.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/ncbiblast.yml]

	omicsdi

	[image: _images/badge22.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/omicsdi.yml]

	omnipath

	[image: _images/badge23.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/omnipath.yml]

	panther

	[image: _images/badge24.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/panther.yml]

	pathwaycommons

	[image: _images/badge25.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/pathwaycommons.yml]

	pdb

	[image: _images/badge26.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/pdb.yml]

	pdbe

	[image: _images/badge27.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/pdbe.yml]

	pfam

	[image: _images/badge28.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/pfam.yml]

	pride

	[image: _images/badge29.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/pride.yml]

	psicquic

	[image: _images/badge30.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/psicquic.yml]

	pubchem

	[image: _images/badge31.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/pubchem.yml]

	quickgo

	[image: _images/badge32.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/quickgo.yml]

	reactome

	[image: _images/badge33.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/reactome.yml]

	rhea

	[image: _images/badge34.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/rhea.yml]

	seqret

	[image: _images/badge35.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/seqret.yml]

	unichem

	[image: _images/badge36.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/unichem.yml]

	uniprot

	[image: _images/badge37.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/uniprot.yml]

	wikipathway

	[image: _images/badge38.svg]
 [https://github.com/cokelaer/bioservices/actions/workflows/wikipathway.yml]

Note

Contributions to implement new wrappers are more than welcome.
See BioServices github page [https://github.com/cokelaer/bioservices/]
to join the development, and the Developer guide on how to implement new
wrappers.

Bioservices command

In version 1.8.2, we included a bioservices command. For now it has only one subcommand to download a NCBI accession number and possibly it genbank or GFF file (if available):

bioservices download-accession --accession K01711.1 --with-gbk

Changelog

	Version

	Description

	1.11.1

	
	Fix regression i uniprot.mapping
(https://github.com/cokelaer/bioservices/issues/245)

	1.11.0

	
	Fix uniprot limitation of 25 results only (

	For developers: all services are now refactorised to use services
as an attribute rather than a parent class.

	Remove ReactomeOld and ReactomeAnalysis (deprecated)

	move rnaseq_ebi (deprecated) to attic for book_keeping

	1.10.4

	
	Fix v1.10.3 adding missing requirements.txt

	1.10.3

	
	Update pdb service to use v2 API

	remove biocarta (website not accesible anymore)

	Update Chembl (no API changes)

	1.10.2

	
	Fix #226 and applied PR from Fix from @GianArauz
https://github.com/cokelaer/bioservices/pull/232 about UniProt
error

	Update MANIFEST to fix #232

	1.10.1

	
	allow command line to download genbank and GFF

	update pride module to use new PRIDE API (July 2022)

	Fixed KEGG bug #225

	1.10.0

	
	Update uniprot to use the new API (june 2022)

	1.9.0

	
	Update unichem to reflect new API

	1.8.4

	
	biomodels. Fix #208

	KEGG: fixed #204 #202 and #203

	1.8.3

	
	Eutils: remove warning due to unreachable URL. Set REST as
attribute rather and inheritance.

	NEW biocontainers module

	KEGG: add save_pathway method. Fix parsing of structure/pdb entry

	remove deprecated function from Reactome

	1.8.2

	
	Fix suds package in code and requirements

	1.8.1

	
	Integrated a change made in KEGG service (DEFINITON was changed to
ORG_CODE)

	for developers: applied black on all modules

	switch suds-jurko to new suds community

	1.8.0

	
	add main standalone application.

	moved chemspider and clinvitae to the attic

	removed picr service, not active anymore

	1.4.X

	
	NEW RNAseq from EBI in rnaseq_ebi module

	Replaced deprecated HGNC with the official web service from genenames.org

	Fully updated EUtils since WSDL is now down; implementation uses REST now.

	Removed the apps/taxonomy module now part of http://github.com/biokit.

	1.3.X

	
	CACHE files are now stored in a general directory in the home

	New REST class to use requests package instead of urllib2.

	Creation of a global configuration file in .config/bioservice/bioservices.cfg

	NEW services: Reactome, Readseq, Ensembl, EUtils

	1.2.X

	
	NEW services: BioDBnet, BioDBNet, MUSCLE, PathwayCommons, GeneProf

	1.1.X

	
	NEW services: biocarta, pfam, ChEBI, UniChem

	1.0.0:

	
	first stable release

	0.9.X:

	
	NEW services: BioModels, Kegg, Reactome, Chembl, PICR, QuickGO,
Rhea, UniProt,WSDbfetch, NCBIblast, PSICQUIC, Wikipath

Warning

Some of the services may be down. BioServices developers are not responsible for the
maintenance or failure of underlying services. Generally speaking (and by
experience) the services are up most of the time but failure may occur because
the site is under maintenance or too many requests have been sent. Another
common reason is the fact that the API of the web services has changed: If so,
BioServices need to be updated. You may contribute or report such API changes on
our Issue [https://github.com/cokelaer/bioservices/issues] page

Installation

BioServices is available on PyPi [http://pypi.python.org/pypi/bioservices], the Python package repository. The following command should install BioServices and its dependencies automatically provided you have pip on your system:

pip install bioservices

If not, please see the external pip installation page [http://www.pip-installer.org/en/latest/installing.html] or pip installation [http://thomas-cokelaer.info/blog/2013/02/python-pip-installation/] entry. You may also find information in the troubleshootings page section about known issues.

Regarding the dependencies, BioServices depends on the following
packages: BeautifulSoup4 (for parsing XML), SOAPpy and suds (to access to
SOAP/WSDL services; suds is used by ChEBI only for which SOAPpy fails to
correctly fetch the service) and easydev. All those packages should be
installed automatically when using pip installer. Since version 1.6.0, we
also make use of pandas and matplotlib to offer some extra functionalities.

User guide

	1. Quick Start
	1.1. Introduction

	1.2. UniProt service

	1.3. KEGG service

	1.4. QuickGO

	1.5. PICR service

	1.6. BioModels service

	1.7. Rhea service

	1.8. Other services

	2. Tutorials
	2.1. KEGG Tutorial

	2.2. Biomodels tutorial

	2.3. Protein test case study

	2.4. Manipulating compound identifiers

	2.5. Mapping identifiers

	2.6. BioMart service

	2.7. GeneProf tutorial

	3. Combining BioServices with external tools
	3.1. PYMOL

	3.2. BioPython

	3.3. Galaxy

	4. Developer Guide
	4.1. Naming convention

	4.2. Creating a service class (REST case)

	4.3. Creating a service class (WSDL case)

	4.4. Others

	4.5. suds and client auth

	4.6. How to include tests ?

	4.7. Continuous integration

	5. Gallery

	6. NoteBooks
	6.1. UniProt

	6.2. BioModels

	6.3. ChEMBL

	6.4. Entrez/Eutils

	6.5. KEGG

	6.6. MUSCLE

	6.7. NCBIBlast

	6.8. WikiPathway

	7. Utilities
	7.1. Service module (REST or WSDL)

	7.2. xmltools module

	8. Services
	8.1. ArrayExpress

	8.2. Biocontainers

	8.3. BiGG

	8.4. BioDBnet

	8.5. BioGrid

	8.6. BioMart

	8.7. BioModels

	8.8. ChEBI

	8.9. ChEMBL

	8.10. COG

	8.11. ENA

	8.12. EUtils

	8.13. GeneProf

	8.14. QuickGO

	8.15. Kegg

	8.16. HGNC

	8.17. Intact (complex)

	8.18. MUSCLE

	8.19. MyGeneInfo

	8.20. NCBIblast

	8.21. OmniPath Commons

	8.22. Panther

	8.23. Pathway Commons

	8.24. PDB/PDBe modules

	8.25. PRIDE module

	8.26. PSICQUIC

	8.27. Rhea

	8.28. Reactome

	8.29. Readseq

	8.30. UniChem

	8.31. UniProt

	8.32. DBFetch

	8.33. Wikipathway

	9. Applications and extra tools
	9.1. Peptides

	9.2. FASTA

	10. References to BioServices on the Web

	11. FAQS
	11.1. General Errors

	11.2. Installation issues

	11.3. General questions

	11.4. Specific Usage

	11.5. Interest of the BioServices classes REST and WSDL ?

	12. Contributors

1. Quick Start

1.1. Introduction

BioServices provides access to several Web Services. Each service requires some expertise on its own.
In this Quick Start section, we will neither cover all the services nor all their functionalities. However,
it should give you a good overview of what you can do with BioServices (both from the user and developer point of views).

Before starting, let us remind what are Web Services. There provide an access to databases or applications via a web interface based on the SOAP/WSDL or the REST technologies. These technologies allow a programmatic access, which we take advantage in BioServices.

The REST technology uses URLs so there is no external dependency.
You simply need to build a well-formatted URL and you will retrieve
an XML document that you can consume with your preferred technology
platform.

The SOAP/WSDL technology combines SOAP (Simple Object Access Protocol), which is
a messaging protocol for transporting information and the WSDL (Web Services
Description Language), which is a method for describing Web Services and their
capabilities.

1.1.1. What methods are available for a given service

Usually most of the service functionalities have been wrapped and we try to keep
the names as close as possible to the API. On top of the service methods, each
class inherits from the BioService class (REST or WSDL). For instance REST
service have the useful request method. Another nice function is the onWeb.

See also

REST, WSDLService

1.1.2. What about the output ?

Outputs depend on the service and functionalities of the service. It can be
heteregeneous. However, output are mostly XML formatted or in tabulated
separated column format (TSV). When XML is returned, it is usually parsed via the
BeautilSoup package (for instance you can get all children using getchildren() function).
Sometimes, we also convert output into dictionaries. So, it really depends on
the service/functionality you are using.

Let us look at some of the Web Services wrapped in BioServices.

1.2. UniProt service

Let us start with the UniProt class. With this
class, you can access to uniprot services. In particular, you can map an ID
from a database to another one. For instance to convert the UniProtKB ID into KEGG ID, use:

>>> from bioservices.uniprot import UniProt
>>> u = UniProt(verbose=False)
>>> u.mapping(fr="UniProtKB_AC-ID", to="KEGG", query='P43403')
{'results': [{'from': 'P43403', 'to': 'hsa:7535'}]}

Note that the returned response from uniprot web service is a dictionary with a key called results, which needs to be selected. Then, a list of identifiers is provided.

You can also search for a specific UniProtKB ID to get exhaustive information:

>>> print(u.search("P43403", frmt="txt"))
ID ZAP70_HUMAN Reviewed; 619 AA.
AC P43403; A6NFP4; Q6PIA4; Q8IXD6; Q9UBS6;
DT 01-NOV-1995, integrated into UniProtKB/Swiss-Prot.
DT 01-NOV-1995, sequence version 1.
...

To obtain the FASTA sequence, you can use searchUniProtId():

>>> print(u.searchUniProtId("P09958", frmt="fasta"))
sp|P09958|FURIN_HUMAN Furin OS=Homo sapiens GN=FURIN PE=1 SV=2
MELRPWLLWVVAATGTLVLLAADAQGQKVFTNTWAVRIPGGPAVANSVARKHGFLNLGQI
FGDYYHFWHRGVTKRSLSPHRPRHSRLQREPQVQWLEQQVAKRRTKRDVYQEPTDPKFPQ
QWYLSGVTQRDLNVKAAWAQGYTGHGIVVSILDDGIEKNHPDLAGNYDPGASFDVNDQDP
DPQPRYTQMNDNRHGTRCAGEVAAVANNGVCGVGVAYNARIGGVRMLDGEVTDAVEARSL
GLNPNHIHIYSASWGPEDDGKTVDGPARLAEEAFFRGVSQGRGGLGSIFVWASGNGGREH
DSCNCDGYTNSIYTLSISSATQFGNVPWYSEACSSTLATTYSSGNQNEKQIVTTDLRQKC
TESHTGTSASAPLAAGIIALTLEANKNLTWRDMQHLVVQTSKPAHLNANDWATNGVGRKV
SHSYGYGLLDAGAMVALAQNWTTVAPQRKCIIDILTEPKDIGKRLEVRKTVTACLGEPNH
ITRLEHAQARLTLSYNRRGDLAIHLVSPMGTRSTLLAARPHDYSADGFNDWAFMTTHSWD
EDPSGEWVLEIENTSEANNYGTLTKFTLVLYGTAPEGLPVPPESSGCKTLTSSQACVVCE
EGFSLHQKSCVQHCPPGFAPQVLDTHYSTENDVETIRASVCAPCHASCATCQGPALTDCL
SCPSHASLDPVEQTCSRQSQSSRESPPQQQPPRLPPEVEAGQRLRAGLLPSHLPEVVAGL
SCAFIVLVFVTVFLVLQLRSGFSFRGVKVYTMDRGLISYKGLPPEAWQEECPSDSEEDEG
RGERTAFIKDQSAL

See also

Reference guide of bioservices.uniprot.UniProt for more details

1.3. KEGG service

The KEGG interface is similar but contains more methods. The tutorial presents
the KEGG itnerface in details, but let us have a quick overview. First, let us start a KEGG instance:

from bioservices import KEGG
k = KEGG(verbose=False)

KEGG contains biological data for many organisms. By default, no organism is
set, which can be checked in the following attribute

k.organism

We can set it to human using KEGG terminology for homo sapiens:

k.organis = 'hsa'

You can use the dbinfo() to obtain statistics
on the pathway database:

>>> print(k.info("pathway"))
pathway KEGG Pathway Database
path Release 65.0+/01-15, Jan 13
 Kanehisa Laboratories
 218,277 entries

You can see the list of valid databases using the databases attribute. Each of the
database entry can also be listed using the list()
method. For instance, the organisms can be retrieved with:

k.list("organism")

However, to extract the Ids extra processing is required. So, we provide aliases
to retrieve the organism Ids easily:

k.organismIds

The human organism is coded as “hsa”. You can also get its T number instead:

>>> k.code2Tnumber("hsa")
'T01001'

Every elements is referred to with a KEGG ID, which may be difficult to handle
at first. There are methods to retrieve the IDs though. For instance, get the list of
pathways iIs for the current organism as follows:

k.pathwayIds

For a given gene, you can get the full information related to that gene by using
the method get():

print(k.get("hsa:3586"))

or a pathway:

print(k.get("path:hsa05416"))

See also

Reference guide of bioservices.kegg.KEGG for more details

See also

KEGG Tutorial for more details

See also

Reference guide of bioservices.kegg.KEGGParser to parse a KEGG entry into a dictionary

1.4. QuickGO

To acces to the GO interface, simply create an instance and look for a entry
using the bioservices.quickgo.QuickGO.Term() method:

>>> from bioservices import QuickGO
>>> g = QuickGO(verbose=False)
>>> print(g.Term("GO:0003824", frmt="obo"))
[Term]
id: GO:0003824
name: catalytic activity
def: "Catalysis of a biochemical reaction at physiological temperatures. In
biologically catalyzed reactions, the reactants are known as substrates, and the
catalysts are naturally occurring macromolecular substances known as enzymes.
Enzymes possess specific binding sites for substrates, and are usually composed
wholly or largely of protein, but RNA that has catalytic activity (ribozyme) is
often also regarded as enzymatic."
synonym: "enzyme activity" exact
xref: InterPro:IPR000183
...

See also

Reference guide of bioservices.quickgo.QuickGO for more details

1.5. PICR service

PICR, the Protein Identifier Cross Reference service provides 2 services
in WSDL and REST protocols. When it is the case, we arbitrary chose one of the
available protocol. In the PICR case, we implemented only the REST interface. The
methods available in the REST service are very similar to those available
via SOAP except for one major difference: only one accession or sequence
can be mapped per request.

The following example returns a XML document containing information about the
protein P29375 found in two specific databases:

>>> from bioservices.picr import PICR
>>> p = PICR()
>>> res = p.getUPIForAccession("P29375", ["IPI", "ENSEMBL"])

See also

Reference guide of bioservices.picr.PICR for more details

1.6. BioModels service

You can access the biomodels service and obtain a model as follows:

>>> from bioservices import biomodels
>>> b = biomodels.BioModels()
>>> model = b.get_model('BIOMD0000000299')

Then you can play with the SBML file with your favorite SBML tool.

In order to get the model IDs, you can look at the full list:

>>> b.get_models()

See also

Reference guide of bioservices.biomodels.BioModels for more details

See also

Biomodels tutorial for more details

1.7. Rhea service

Create a Rhea instance as follows:

from bioservices import Rhea
r = Rhea()

Rhea provides only 2 type of requests with a REST interface that are available with the search() and query() methods.
Let us first find information about the chemical product caffein using the search() method:

response = r.search("caffein*")

The output is a JSON file that we convert in BioServices into a Pandas dataframe.

The previous request returns more than 10,000 entries. Here are the first two
entries:

 Reaction identifier Equation ChEBI name Cross-reference (KEGG) Cross-reference (Reactome)
0 RHEA:47148 a ubiquinone + caffeine + H2O = 1,3,7-trimethy... MetaCyc:RXN-11523 KEGG:R07980 NaN
1 RHEA:10280 1,7-dimethylxanthine + S-adenosyl-L-methionine... MetaCyc:RXN-7601 KEGG:R07921 NaN

The second method provided is the query() method. Given an Id,
you can query the Rhea database using Id found earlier (e.g., 10280). This is
finally a filtering method as compared to the search method. If you kow what
your are looking for (the rhea-id) use this method instead of the search method:

info = r.query("10280", columns="rhea-id,equation", limit=10)

See also

Reference guide of bioservices.rhea.Rhea for more details

1.8. Other services

There are many other services provided within BioServices and the reference
guide should give you all the information available with examples to start to
play with any of them. The home page of the services themselves is usually a
good starting point as well.

Services that are not available in BioServices can still be accesssed to quite
easily as demonstrated in the Developer Guide section.

2. Tutorials

This section present the KEGG and BioModels services in more details. The
Protein test case study illustrates how several services can be used to get lots
of information about a specific protein. New Contributino to this section are
welcomed.

	2.1. KEGG Tutorial
	2.1.1. Introduction

	2.1.2. Searching for an organism

	2.1.3. Look for pathways (by name)

	2.1.4. Look for pathway (by genes i.e., IDs or usual name)

	2.1.5. Introspecting a pathway

	2.1.6. Building a histogram of all relations in human pathways

	2.2. Biomodels tutorial

	2.3. Protein test case study
	2.3.1. Get a unique identifier and gene names from a name

	2.3.2. Getting the fasta sequence

	2.3.3. Using BLAST on the sequence

	2.3.4. Searching for relevant pathways

	2.3.5. Searching for binary Interactions

	2.3.6. What’s next ?

	2.4. Manipulating compound identifiers
	2.4.1. Retrieve a compound identifier from KEGG, ChEBI and ChEMBL

	2.5. Mapping identifiers
	2.5.1. Convert from KEGG ID to ChEBI (compound)

	2.5.2. convert from KEGG ID to UniProt and vice versa (gene)

	2.6. BioMart service

	2.7. GeneProf tutorial
	2.7.1. Histogram expression data

	2.7.2. Transcription factor network of stem cells

	2.7.3. Integrating expression data in pathways

Contents

	KEGG Tutorial

	Introduction

	Searching for an organism

	Look for pathways (by name)

	Look for pathway (by genes i.e., IDs or usual name)

	Introspecting a pathway

	Building a histogram of all relations in human pathways

2.1. KEGG Tutorial

2.1.1. Introduction

Start a kegg interface (default organism is human, that is called hsa):

from bioservices.kegg import KEGG
k = KEGG()

KEGG has many databases. The list can be found in the attribute
bioservices.kegg.KEGG.databases. Each database can be
queried with the bioservices.kegg.KEGG.list() method:

k.list("organism")

The output contains Id of the organism and some other information. To retrieve
the Ids, you will need to process the output. However, we provide an alias:

print(k.organismIds)

In general, methods require an access to the on-line KEGG database
therefore it takes time. For instance, the command above takes a couple of
seconds. However, some are buffered so next time you call it, it will be much faster.

Another useful alias is the pathwayIds to retrieve all pathway Ids. However,
you must first specify the organism you are interested in. From the command above
we know that hsa (human) is valid organism Id, so let us set it and then get
the list of pathways:

k.organism = "hsa"
k.pathwayIds

Another function provided by the KEGG API is the
bioservices.kegg.KEGG.get() one that query a specific entry. Here we are
interested into the human gene with the code 7535:

k.get("hsa:7535") #hsa:7535 is also known as ZAP70

It is quite verbose and is a single string, which may be tricky to handle. We
provide a tool to ease the parsing (see below and bioservices.kegg.KEGG.parse()) returned by bioservices.kegg.KEGG.parse().

2.1.2. Searching for an organism

The method bioservices.kegg.KEGG.find() is quite convenient to search for
entries in different database. For instance, if you want to know the code of
an entry for the gene called ZAP70 in the human organism, type:

>>> s.find("hsa", "zap70")
'hsa:7535\tZAP70, SRK, STCD, STD, TZK, ZAP-70; zeta-chain (TCR) associated protein kinase 70kDa (EC:2.7.10.2); K07360 tyrosine-protein kinase ZAP-70 [EC:2.7.10.2]\n'

It is quite powerful and more examples will be shown. However, it has some limitations.
For example, what about searching for the organism Ids that correspond to any
Drosophila? It does not look like it is possible. BioServices provides a method to search
for an organism Id using lookfor_organism() given
the name (or part of it):

>>> k.lookfor_organism("droso")
['T00030 dme Drosophila melanogaster (fruit fly) Eukaryotes;Animals;Arthropods;Insects',
'T01032 dpo Drosophila pseudoobscura pseudoobscura Eukaryotes;Animals;Arthropods;Insects',
'T01059 dan Drosophila ananassae Eukaryotes;Animals;Arthropods;Insects',
'T01060 der Drosophila erecta Eukaryotes;Animals;Arthropods;Insects',
'T01063 dpe Drosophila persimilis Eukaryotes;Animals;Arthropods;Insects',
'T01064 dse Drosophila sechellia Eukaryotes;Animals;Arthropods;Insects',
'T01065 dsi Drosophila simulans Eukaryotes;Animals;Arthropods;Insects',
'T01067 dwi Drosophila willistoni Eukaryotes;Animals;Arthropods;Insects',
'T01068 dya Drosophila yakuba Eukaryotes;Animals;Arthropods;Insects',
'T01061 dgr Drosophila grimshawi Eukaryotes;Animals;Arthropods;Insects',
'T01062 dmo Drosophila mojavensis Eukaryotes;Animals;Arthropods;Insects',
'T01066 dvi Drosophila virilis Eukaryotes;Animals;Arthropods;Insects']

2.1.3. Look for pathways (by name)

Searching for pathways is quite similar. You can use the find method as
above:

>>> print(s.find("pathway", "B+cell"))
path:map04112 Cell cycle - Caulobacter
path:map04662 B cell receptor signaling pathway
path:map05100 Bacterial invasion of epithelial cells
path:map05120 Epithelial cell signaling in Helicobacter pylori infection
path:map05217 Basal cell carcinoma

Note that without the + sign, you get all pathway that contains B or cell.
Yet, we have 5 results, which do not neccesseraly fit our request. Alternatively
you can use one of BioServices method:

>>> k.lookfor_pathway("B cell")
['path:map04662 B cell receptor signaling pathway']

You can also search for a pathway knowing some gene names but first we need to
introspect the pathway to get the genes IDs.

2.1.4. Look for pathway (by genes i.e., IDs or usual name)

Imagine you want to find the pathway that contains ZAP70. As we have seen
earlier you can get its gene Id as follows:

>>> s.find("hsa", "zap70")
hsa:7535

The following commands do not help:

>>> s.find("pathway", "zap70")
>>> s.find("pathway", "hsa:7535")
>>> s.find("pathway", "7535")

We provide a method to search for pathways that contain the required gene Id.
You can search by KEGG Id or gene name:

>>> res = s.get_pathway_by_gene("7535", "hsa")
>>> s.get_pathway_by_gene("zap70", "hsa")
['path:hsa04064', 'path:hsa04650', 'path:hsa04660', 'path:hsa05340']

This commands first search for the gene Id in the KEGG database and then parse
the output to retrieve the pathways.

2.1.5. Introspecting a pathway

Let us focus on one pathway (path:hsa04660). You can use the get()
command to obtain information about the pathway.

print(s.get("hsa04660"))

The output is a single string where you can recognise different fields such as
NAME, GENE, DESCRIPTION and so on. This is quite limited. In BioServices, we provide a convenient parser that converts the output of the previous command into a dictionary:

>>> s = KEGG()
>>> data = s.get("hsa04660")
>>> dict_data = s.parse(data)
>>> print(dict_data['GENE'])
'10000': 'AKT3; v-akt murine thymoma viral oncogene homolog 3 (protein kinase B, gamma) [KO:K04456] [EC:2.7.11.1]',
'10125': 'RASGRP1; RAS guanyl releasing protein 1 (calcium and DAG-regulated) [KO:K04350]',
'1019': 'CDK4; cyclin-dependent kinase 4 [KO:K02089] [EC:2.7.11.22]',
...

This is fine if we just want the name of the genes but what about their
relations? Actually, there is an option with the get method where you can
specify the output format. In particular you can request the pathway to be
returned as a kgml file:

res = s.get("hsa04660", "kgml")

This file can be parsed to extract the relations. We provide a tool to do that:

res = s.parse_kgml_pathway("hsa04660")

The variable returned is a dictionary with 2 keys: “entries” and “relations”.

You can extract the relations as follows:

res['relations']

It is a list of relations, each relation being a dictionary:

>>> res['relations'][0]
{'entry1': u'61',
 'entry2': u'63',
 'link': u'PPrel',
 'name': u'binding/association',
 'value': u'---'}

Here entry1 and 2 are Ids. The Ids can be found in

res['entries']

From there you should consult bioservices.kegg.KEGG.parse_kgml_pathway()
and the KEGG document for more information. You may also look at
bioservices.kegg.KEGG.pathway2sif() method that extact only protein-protein
interactions with activation and inhibition links only.

2.1.6. Building a histogram of all relations in human pathways

Scanning all relations of the Human organism takes about 5-10 minutes. You can
look at a subset by setting Nmax to a small value (e.g., Nmax=10).

from pylab import *
extract all relations from all pathways
from bioservices.kegg import KEGG
s = KEGG()
s.organism = "hsa"

retrieve more than 260 pathways so it takes time
results = [s.parse_kgml_pathway(x) for x in s.pathwayIds]
relations = [x['relations'] for x in results]

hist([len(r) for r in relations], 20)
xlabel('number of relations')
ylabel('\#')
title("number of relations per pathways")
grid(True)

[image: all_relations.png]
You can then extract more information such as the type of relations:

>>> # scan all relations looking for the type of relations
>>> import collections # for python 2.7.0 and above

>>> # we extract from all pathways, all relations, where we retrieve the type of
>>> # relation (name)
>>> data = list(flatten([[x['name'] for x in rel] for rel in relations]))

>>> counter = collections.Counter(data)
>>> print(counter)
Counter({u'compound': 5235, u'activation': 3265, u'binding/association': 1087,
u'phosphorylation': 940, u'inhibition': 672, u'indirect effect': 559,
u'expression': 542, u'dephosphorylation': 93, u'missing interaction': 80,
u'dissociation': 78, u'ubiquitination': 48, u'state change': 24, u'repression':
12, u'methylation': 2})

See also

bioservices.biomodels.BioModels for the full reference guide.

2.2. Biomodels tutorial

Start a biomodels interface:

>>> from bioservices import BioModels
>>> s = BioModels()

look at the list of model identifiers:

models = s.get_all_models()

If you have a specific model identifier, then it is easy. You can
retrieve the model itself:

model s.get_model("BIOMD0000000100")

and get its name or other types of information:

>>> model['name']
Rozi2003_GlycogenPhosphorylase_Activation

In particular, description, author and files associated with this model. Here,
we can see the files and in particular a PNG image called
BIOMD0000000100.png. You can get it as follows:

s.get_model_download("BIOMD0000000100", filename="BIOMD0000000100.png")

or just download the whole bundle:

s.get_model_download("BIOMD0000000100")

saved into BIOMD0000000100.zip.

2.3. Protein test case study

Application: retrieving information about a given protein

This section uses BioServices to demonstrate the interest of combining
several services together within a single framework using the Python
language as a glue language.

In this tutorial we are interested in using BioServices to obtain information
about a specific protein. Let us focus on ZAP70 protein (homo sapiens).

2.3.1. Get a unique identifier and gene names from a name

From Uniprot, we can obtain the unique accession number of ZAP70, which may be
useful later on. Let us try to use the search() method:

>>> from bioservices import *
>>> u = UniProt(verbose=False)
>>> u.search("ZAP70_HUMAN") # could be lower case

The default format of the returned answer is “tabulated”:

>>> res = u.search("ZAP70_HUMAN", frmt="tab")
>>> print(res)
Entry Entry name Status Protein names Gene names Organism Length
P43403 ZAP70_HUMAN reviewed Tyrosine-protein kinase ZAP-70 (EC 2.7.10.2) (70 kDa zeta-chain associated protein) (Syk-related tyrosine kinase) ZAP70 SRK Homo sapiens (Human) 619

It is better, but let us simplify even further. In BioServices, the output
of the tabulated format contains several columns but we can select only a subset
such as the Entry (accession number) and the gene names, which are coded as “id”
and “genes” in uniprot database:

>>> res = u.search("ZAP70_HUMAN", frmt="tab", columns="id,genes")
>>> print(res)
Entry Gene names
P43403 ZAP70 SRK

So here we got the Entry P43403. Entry and Gene names can be saved in two
variables as follows:

>>> res = u.search("ZAP70_HUMAN", frmt="tab", columns="id,genes")
>>> entry, gene_names = res.split("\n")[1].split("\t")

2.3.2. Getting the fasta sequence

It is then straightforward to obtain the FASTA sequence of ZAP70 using another
method from the UniProt class called retrieve():

>>> sequence = u.retrieve("P43403", "fasta")
>>> print(sequence)
>sp|P43403|ZAP70_HUMAN Tyrosine-protein kinase ZAP-70 OS=Homo sapiens OX=9606 GN=ZAP70 PE=1 SV=1
MPDPAAHLPFFYGSISRAEAEEHLKLAGMADGLFLLRQCLRSLGGYVLSLVHDVRFHHFP
IERQLNGTYAIAGGKAHCGPAELCEFYSRDPDGLPCNLRKPCNRPSGLEPQPGVFDCLRD
AMVRDYVRQTWKLEGEALEQAIISQAPQVEKLIATTAHERMPWYHSSLTREEAERKLYSG
AQTDGKFLLRPRKEQGTYALSLIYGKTVYHYLISQDKAGKYCIPEGTKFDTLWQLVEYLK
LKADGLIYCLKEACPNSSASNASGAAAPTLPAHPSTLTHPQRRIDTLNSDGYTPEPARIT
SPDKPRPMPMDTSVYESPYSDPEELKDKKLFLKRDNLLIADIELGCGNFGSVRQGVYRMR
KKQIDVAIKVLKQGTEKADTEEMMREAQIMHQLDNPYIVRLIGVCQAEALMLVMEMAGGG
PLHKFLVGKREEIPVSNVAELLHQVSMGMKYLEEKNFVHRDLAARNVLLVNRHYAKISDF
GLSKALGADDSYYTARSAGKWPLKWYAPECINFRKFSSRSDVWSYGVTMWEALSYGQKPY
KKMKGPEVMAFIEQGKRMECPPECPPELYALMSDCWIYKWEDRPDFLTVEQRMRACYYSL
ASKVEGPPGSTQKAEAACA

Note

There are many services that provides access to the FASTA sequence. We chose
uniprot but you could use the Entrez utilities as well as other services.

2.3.3. Using BLAST on the sequence

You can then analyse this sequence with your favorite tool. As an example, within BioServices you can use NCIBlast but first let us extract the sequence itself (without the header):

sequence = sequence.split("\n", 1)[1].strip("\n")

then,

>>> s = NCBIblast(verbose=False)
>>> jobid = s.run(program="blastp", sequence=sequence, stype="protein", \
... database="uniprotkb", email="cokelaer@ebi.ac.uk")
>>> print(s.getResult(jobid, "out")[0:1000])
BLASTP 2.2.26 [Sep-21-2011]

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer,
Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997),
"Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs", Nucleic Acids Res. 25:3389-3402.

Query= EMBOSS_001
 (619 letters)

Database: uniprotkb
 32,727,302 sequences; 10,543,978,207 total letters

Searching..done

 Score E
Sequences producing significant alignments: (bits) Value

SP:ZAP70_HUMAN P43403 Tyrosine-protein kinase ZAP-70 OS=Homo sap... 1279 0.0
TR:H2QIE3_PANTR H2QIE3 Tyrosine-protein kinase OS=Pan troglodyte... 1278 0.0
TR:G3QGN8_GORGO G3QGN8 Tyrosine-protein kinase OS=Gorilla gorill... 1278 0.0
TR:G1QLX3_NOMLE G1QLX3 Tyrosine-protein kinase OS=Nomascus leuco... 1249 0.0
TR:F6SWY7_CALJA F6SWY7 Tyrosin

The last command waits for the job to be finised before printing the results,
which may be quite long. We could look at the beginnin of the reported results
and select only HUMAN sequences to see that the best sequence found is indeed
ZAP70_HUMAN as expected:

>>> [x for x in s.getResult(jobid, "out").split("\n") if "HUMAN" in x]
['SP:ZAP70_HUMAN P43403 Tyrosine-protein kinase ZAP-70 OS=Homo sap... 1279 0.0 ',
 'SP:KSYK_HUMAN P43405 Tyrosine-protein kinase SYK OS=Homo sapiens... 691 0.0 ',
 'TR:A8K4G2_HUMAN A8K4G2 Tyrosine-protein kinase OS=Homo sapiens P... 691 0.0 ',
...

2.3.4. Searching for relevant pathways

The KEGG services provides pathways, so let try to find pathways that contains
our targetted protein. First we need to know the KEGG Id that corresponds to
ZAP70. We can use the find method form KEGG service:

>>> from bioservices import KEGG
>>> k = KEGG(verbose=False)
>>> k.find("hsa", "zap70") # "hsa" stands for homo sapiens
hsa:7535 ZAP70, SRK, STCD, STD, TZK, ZAP-70; zeta-chain (TCR) associated protein kinase 70kDa (EC:2.7.10.2); K07360 tyrosine-protein kinase ZAP-70 [EC:2.7.10.2

There are other ways to perform this conversion using the bioservices.uniprot.UniProt.mapping() or bioeservices.KEGG.conv() methods (e.g., textit{k.conv(“hsa”, “up:P43403”)}).

Now, let us get the pathways that contains this ID:

>>> k.get_pathway_by_gene("7535", "hsa")
{'hsa04064': ' NF-kappa B signaling pathway',
'hsa04650': 'Natural killer cell mediated cytotoxicity',
 'hsa04660': 'T cell receptor signaling pathway',
 'hsa05340': 'Primary immunodeficiency'}

We can look at the first pathway in a browser (highlighting the ZAP70 node):

>>> k.show_pathway("hsa04064", keggid={"7535": "red"})

2.3.5. Searching for binary Interactions

For this purpose, we could use PSICQUIC services to find the interactions that
involve ZAP70 in the mint database:

>>> from bioservices import PSICQUIC
>>> s = PSICQUIC(verbose=False)
>>> data = s.query("mint", "ZAP70 AND species:9606")

where 9606 is the taxonomy Id for homo sapiens. We could also figure out how
many interactions could be found in each dabase for this particular query:

>>> s.getInteractionCounter("zap70 AND species:9606")
{'apid': 82,
 'bar': 0,
 'bind': 4,
 'bindingdb': 29,
 'biogrid': 73,
 'chembl': 161,
 'dip': 0,
 'i2d-imex': 0,
 'innatedb': 13,
 'innatedb-imex': 0,
 'intact': 11,
 'interoporc': 0,
 'irefindex': 273,
 'matrixdb': 0,
 'mbinfo': 0,
 'mint': 34,
 'molcon': 0,
 'mpidb': 0,
 'reactome': 0,
 'reactome-fis': 134,
 'spike': 47,
 'string': 319,
 'topfind': 0,
 'uniprot': 0}

We see for instance that the mint database has 34 interactions. Coming back to the interactions returned by s.query, we find indeed 34 intercations
between ZAP70 and another component:

>>> len(data)
34

Let us look at the first one:

>>> for x in data[0]: print(x)
uniprotkb:P15498
uniprotkb:P43403
-
-
uniprotkb:VAV1(gene name)|uniprotkb:VAV(gene name synonym)
uniprotkb:ZAP70(gene name)|uniprotkb:SRK(gene name synonym)|uniprotkb:70 kDa
zeta-associated protein(gene name synonym)|uniprotkb:Syk-related tyrosine
kinase(gene name synonym)
psi-mi:"MI:0019"(coimmunoprecipitation)
-
pubmed:9151714
taxid:9606(Homo sapiens)
taxid:9606(Homo sapiens)
psi-mi:"MI:0914"(association)
psi-mi:"MI:0471"(mint)
mint:MINT-8035351
mint-score:0.28(free-text)|homomint-score:0.28(free-text)'intact-miscore:0.60']

The First two elements are the entries for specy A and B. The last element is the
score. The 11th element is the type of interaction and so on.

What could be useful is to convert these elements into uniprot ID only. With
mint database it is irrelevant for this particular entry but with other DBs or entries, it may be useful (e.g., biogrid).

BioServices provides such a function called convert():

>>> data = s.query("biogrid", "ZAP70 AND species:9606")
>>> data2 = s.convert(data, "biogrid")

Warning

some databases may be offline. If so, try we another database. Type
“s.activeDBs”.

convert method converts all entries from data into uniprot ID. If this is
not possible, the entry is removed. The query and convert works on a single database but you we could query all
or a subset of all databases using the queryAll and convertAll functions:

>>> data = s.queryAll("ZAP70 AND species:9606", databases=["mint", "biogrid"])
>>> data2 = s.convertAll(data)

However, extra cleaning is required to remove entries that are not relevant (no match
to uniprot ID, redundant, not a protein, self interactions, …). In order to
ease this tast, the psicquic.AppsPPI class is very useful.

from bioservices import psicquic
s = psicquic.AppsPPI()
s.queryAll("ZAP70 AND species:9606", databases=["mint", "biogrid", "intact", "reactome-fis"])
s.summary()
s.show_pie()

(Source code)

The summary function print a useful summary about the number of found
interactions and overlap between databases:

 >>> s.summary()
 Found 8 interactions within intact database
 Found 124 interactions within reactome-fis database
 Found 19 interactions within mint database
 Found 67 interactions within biogrid database

 Found 152 interactions in 1 common databases
 Found 14 interactions in 2 common databases
 Found 0 interactions in 3 common databases
 Found 1 interactions in 4 common databases

This may be different depending on the available databases.
Finally, you can obtain the relation that was found in the 4 databases:

 >>> s.relevant_interactions[4]
 [['LCK_HUMAN', 'ZAP70_HUMAN']]

2.3.6. What’s next ?

There are lots of other services that could be usefule. An example is the
wikipathway (see Wikipathway) to retrieve even more pathways that include the ZAP70 protein.
Another example is the BioMart portal. You could use it to retrieve pathways
from REACTOME (see BioMart). You can also retrieve
target from ChEMBL given the uniprot ID (get_target_by_uniprotId(“P43403”))
and so on.

2.4. Manipulating compound identifiers

Application: retrieving information about a compound

This section uses BioServices to demonstrate the interest of combining
several services together within a single framework using the Python language as
a glue language

2.4.1. Retrieve a compound identifier from KEGG, ChEBI and ChEMBL

Let us look at a compound called Geldanamycin that inhibits Hsp90.
Let us search for information about that compound in several databases
and manipulate the different identifiers.

First, let us retrieve information on KEGG database:

>>> from bioservices import *
>>> k = KEGG(verbose=False)

KEGG compounds have links to other databases. It is not systematic but the ChEBI
database is often referenced. So we will want to convert the KEGG identifer to a
ChEBI identifier. Later, we can convert a ChEBI to a ChEMBL identifier using
another Web Service such as UniChem.

We can get a mapping dictionary from the KEGG compound to ChEBI as follows:

>>> map_kegg_chebi = k.conv("chebi", "compound")
>>> len(map_kegg_chebi)
15845

>>> print(k.find("compound", "geldanamycin"))
cpd:C11222 Geldanamycin
cpd:C15823 Progeldanamycin

Let us look at the first one (KEGG id cpd:C11222). We can get lots
of information from KEGG already by using:

>>> print(k.get("C11222"))

Form which, there is a link to other databases in particular ChEBI
(ChEBI:5292). We could use the mapping dictionary created above:

>>> map_kegg_chebi['cpd:C11222']
'chebi:5292'

Unfortunately, there is no mapping function from KEGG to ChEMBL in KEGG Web Service.

However, BioServices provides access to the bioservices.unichem service.
This service provides a useful mapping function from kegg to chembl:

>>> uni = UniChem()
>>> mapping = uni.get_mapping("kegg_ligand", "chembl")
>>> mapping['C11222']
'CHEMBL278315'

For sanity check, let us see that the ChEBI is indeed 5292 as given within the
KEGG database:

>>> uni = UniChem()
>>> mapping = uni.get_mapping("kegg_ligand", "chebi")
>>> mapping['C11222']
'5292'

(2) In order to convert KEGG gene names into uniprot gene name, we can also use
the UniProt web service from BioServices as follows:

>>> from bioservices import *
>>> u = UniProt()
>>> u.mapping(fr='ID', to='KEGG_ID', query="ZAP70_HUMAN")
{'ZAP70_HUMAN': 'hsa:7535'}

You can get accession number or protein name identifier from the KEGG identifier
as follows:

>>> u.mapping(fr='KEGG_ID', to='ID', query='hsa:7535')
{'hsa7535': 'ZAP70_HUMAN'}
>>> u.mapping(fr='KEGG_ID', to='ACC', query='hsa:7535')
{'hsa7535': 'P43403'}

2.5. Mapping identifiers

There are quite a few functions from different Web Services that can help to map
identifiers from one database to the other. This tutorial presents some of them.

2.5.1. Convert from KEGG ID to ChEBI (compound)

>>> from bioservices import *
>>> k = KEGG(verbose=False)
>>> map_kegg_chebi = k.conv("chebi", "compound")
>>> map_kegg_chebi['cpd:C11222']
'chebi:5292'

2.5.2. convert from KEGG ID to UniProt and vice versa (gene)

In order to convert KEGG gene names into uniprot gene name, we can also
use the UniProt web service from BioServices as follows:

>>> from bioservices import *
>>> u = UniProt()
>>> u.mapping(fr="UniProtKB_AC-ID", to="KEGG", query='P43403')
{'results': [{'from': 'P43403', 'to': 'hsa:7535'}]}

You can get accession number or protein name identifier from the KEGG
identifier as follows:

Due to an API change in 2022 and for back compatiblity, the mapping from KEGG to e.g. uniprot is a bit more complex than it used to be. First, the conversion:

>>> res = u.mapping(fr='KEGG', to='UniProtKB', query='hsa:7535')

Then, we extract the results (the first element) and the ‘to’ key. We can then extract e.g. the uniprot ID

>>> res['results'][0]['to']['uniProtkbId']
'ZAP70_HUMAN'

and the primary accession as follows:

>>> res['results'][0]['to']['primaryAccession']
'P43403'

One can also use the bioservices.kegg.KEGG.conv() method:

>>> k = KEGG()
>>> mapping_kegg_uniprot = k.conv("hsa", "uniprot")

2.6. BioMart service

BioMart provides a uniform interface to many services such as Cosmic, Ensembl
and many more. In BioMart terminology a service is called a mart. As an
example, we will consider the COSMIC interface provided by
BioMart (see COSMIC [http://cancer.sanger.ac.uk/biomart/martview/]). You
can play with the interface itself to get an idea of what can be selected (e.g.,
datasets, filters, attributes). To help you, let us give a simple example that
consists in converting the ensemble identifiers into entrez identifiers.

First you create an instance. There are lots of services behind the scene. The
ENSEMBL_MART_ENSEMBL provides the conversion we are looking for.

from bioservices import BioMart
b = BioMart()
datasets = b.get_datasets("ENSEMBL_MART_ENSEMBL")

In datasets, there is a hsapiens_gene_ensembl database. Let us add it to the
request that will be send:

b.add_dataset_to_xml(dataset)

We want to extract only the to following attributes:

b.add_attribute_to_xml("ensemble_gene_id")
b.add_attribute_to_xml("entrezgene_id")

If you are interested in a set of identifiers, provide it as a list (here below
the queries:

queries = ["", ""]
b.add_filter_to_xml("ensemble_gene_id", queries)

and finally do the query itself:

xml = b.get_xml()
res = b.query(xml)

You can obtain the attributes and filters of a dataset as follows:

dataset = 'hsapiens_gene_ensembl'
attributes = b.attributes(dataset)
filters = b.filters(dataset)

Here is another example with cosmic.

Note

the cosmic mart was available at the time of 1.0 but not during
release 1.4.1 . This is not a BioServices issue but the COSMIC mart being
down. Hopefully, it will be available again soon. meanwhile this
example should help you get a feeling of what can be done with a MART.

In BioServices, you can create a biomart request (which is a XML document) but first
we need to figure out what are the datasets associated with the COSMIC mart. The tricky part is to know
the names of the datasets/attributes/filters. BioServices provides a function
that ease this task. First let create an instance of BioMart:

>>> from bioservices import *
>>> s = BioMart()

Then, let us use the lookfor() as follows:

>>> s.lookfor("cosmic")
Candidate:
 database: cosp
 MART name: CosmicMart
 displayName: COSMIC (SANGER UK)
 hosts: www.sanger.ac.uk

From the previous command, only one mart has been found. It is called
CosmicMart, from which we can retrieve the datasets:

>>> s.datasets("CosmicMart")
['COSMIC67', 'COSMIC68', 'COSMIC66']

The are lots of entries in such datasets and we want to restrict our request
using filters and attributes. Let us use the “COSMIC60” dataset. The following
commands can help you in figuring out what are the valid names of attributes and
filters to be used:

>>> s.attributes("COSMIC67")
>>> s.filters("COSMIC67")

They return list of dictionaries that provide the identifiers (keys of the
dictionary) and information about the identifier (e.g. descriptive name).

For instance, if you want to add the gene name in the list of attributes, you will need to know its
identifier. If you look at the dictionary you will find the “gene_name” key that contains:

>>> s.attributes("COSMIC67")["gene_name"]
['Gene Name',
 '',
 'naive_attributes',
 'html,txt,csv,tsv,xls',
 'COSMIC67__MART__MAIN',
 'gene_name']

So if you want to add the Gene Name attribute, you must use the
gene_name identifier. Similarly for filters. In order to use a filter you
must use the identifier as well as a value. Values are contained in the
dictionary returned by filters(). For instance, the “Mutated Sample” filter
given by the “samp_gene_mutated” identifier returns a list, which second element
contains the list of valid values (here y or n character):

>>> s.filters("COSMIC67")
['Mutated Sample',
 '[y,n]',
 '',
 'naive_filters',
 'list',
 '=',
 'COSMIC67__MART__MAIN',
 'samp_gene_mutated']

So, there is a little bit of work for the user to figure out the identifiers of the attributes and filters. This could be a good exercice but let us give the list of relevant identifiers and there names that we want to use in this tutorial:

	category

	name

	identifier

	filter

	Mutated Sample

	samp_gene_mutated (y)

	filter

	Primary Site

	site_primary (breast)

	filter

	Validation Status

	validation_status (verified)

	Attribute

	Cosmic Sample ID

	id_sample

	Attribute

	Sample Name

	sample_name

	Attribute

	Sample Source

	sample_source

	Attribute

	Tumour source

	tumour_source

	Attribute

	Gene Name

	gene_name

	Attribute

	Accession Number

	accession_number

	Attribute

	Cosmi Mutation ID

	id_mutation

	Attribute

	Gene ID

	id_gene

It is now time to create the XML request by adding attributes/filters and the
dataset:

>>> # add the dataset
>>> s.add_dataset_to_xml("COSMIC67")

>>> # add the attributes
>>> s.add_attribute_to_xml("id_sample")
>>> s.add_attribute_to_xml("sample_name")
>>> s.add_attribute_to_xml("sample_source")
>>> s.add_attribute_to_xml("tumour_source")
>>> s.add_attribute_to_xml("gene_name")
>>> s.add_attribute_to_xml("accession_number")
>>> s.add_attribute_to_xml("id_mutation")
>>> s.add_attribute_to_xml("id_gene")

>>> # add the filters
>>> s.add_filter_to_xml("samp_gene_mutated", "y")
>>> s.add_filter_to_xml("site_primary", "breast")
>>> s.add_filter_to_xml("validation_status", "verified")

You can create the XML request that will be send:

>>> xml = s.get_xml()

And finally send the request:

>>> res = s.query(xml)

2.7. GeneProf tutorial

GeneProf tutorial

New in version 1.2.0.

Section author: Thomas Cokelaer, Dec 2013

GeneProf [http://www.geneprof.org/GeneProf/index.jsp] is a web-based, graphical software suite that allows users to analyse data produced using high-throughput sequencing platforms (RNA-seq and ChIP-seq; “Next-Generation Sequencing” or NGS): Next-gen analysis for next-gen data

BioServices uses the GeneProf Web Services to enable programmatic access to the public data stored in GeneProf’s databases via Python.

Note

GeneProf services is quite versatile and contains many resources and examples. For any technical or scientific questions related to the service itself, please see GeneProf About&Help [http://www.geneprof.org/GeneProf/help_and_tutorials.jsp].

Here below you will find a couple of examples related to GeneProf.

2.7.1. Histogram expression data

	Reference

	https://www.geneprof.org/GeneProf/media/bpsm-2013/

In the example below, we use geneprof to

	search for Gene identifiers related to an organism (mouse) and keyword (nanog).

	From the gene identifiers, retrieve the gene expression values for a given gene in all experiments

	plot histogram of the log values found above.

Note

broken example on June 2017. Service should be fix soon. Issue
reported to the author.

>>> from bioservices import GeneProf
>>> g = GeneProf(verbose=True)
>>> res = g.search_gene_ids("nanog", "mouse")
>>> print(res)
{10090: [29640, 14899]}
>>> expr1 = g.get_expression("mouse", 29640)['values']
>>> expr2 = g.get_expression("mouse", 14899)['values']

>>> import math
>>> values1 = [math.log(x["RPKM"]+1, 2.) for x in expr1]
>>> values2 = [math.log(x["RPKM"]+1, 2.) for x in expr2]

>>> from pylab import clf, subplot, hist
>>> clf()
>>> subplot(2,1,1)
>>> hist(values1)
>>> subplot(2,1,2)
>>> hist(values2)

2.7.2. Transcription factor network of stem cells

	References

	https://www.geneprof.org/GeneProf/media/recomb-2013/

Another example, here below consists in retrieving
the binding targets of transcription factors (about 70) in mouse
embryonic stem cells, and generate a SIF network that could be open and visualised in Cytoscape.

The example below can probably be simplified and make use of tools such as networkx to manipulate
and visualise the final network. Please use with care:

>>> # first import and create a GenProf instance
>>> from bioservices import GeneProf
>>> g = GeneProf(verbose=False)
>>>
>>> # find all pubic experimental mouse samples in geneprof
>>> samples = g.get_list_experiment_samples("mouse")['samples']
>>> # look at entries that contains "Gene"
>>> graph = {}
>>> mapgene = {}
>>> for i, entry in enumerate(samples):
... print("progress %s/%s" % (i+1, len(samples)))

... # keep only entries that have cell type "embryonic stem cell" in the celltype
... if "Gene" in entry.keys() and "Cell_Type" in entry.keys() and entry["Cell_Type"]=="embryonic stem cell":
...
... # aliases
... sampleId = entry['sample_id']
... gene = entry["Gene"]

... # get gene id and save mapping in a dictionary to be used later
... geneId = g.get_gene_id("mouse", "C_NAME", gene)['ids']
... mapgene[geneId[0]] = gene

... # get targets and print them
... targets = g.get_targets_by_experiment_sample("mouse", sampleId)

... # could be simplied inside the geneprof.py module
... if 'targets' in targets.keys():
... targets = targets['targets']

... # print the results
... for x in targets:
... print gene, geneId[0], " ", x['feature_id']
... graph[gene] = [x['feature_id'] for x in targets]

>>> # The graph saved in the graph variables is quite large. Let us simplified keeping target that
>>> # are in the list of genes only
>>> simple_graph = {}
>>> for k, v in graph.iteritems():
... simple_graph[k] = [mapgene[x] for x in v if x in mapgene.keys()]
>>> len(simple_graph.keys())
72
>>> sum([len(simple_graph[x]) for x in simple_graph.keys()])
2137

Finally, you can look at the graph with your favorite tool such as Cytoscape, Gephi.

Here below, I’m using a basic graph visualisation tool implemented in CellNOpt [http://www.cellnopt.org], which is not dedicated
for Network visualisation but contains a small interface to graphviz useful in this context (it has a python interface):

>>> from cno import CNOGraph
>>> c = CNOGraph()
>>> for k in simple_graph.keys():
... for v in simple_graph[k]:
... c.add_edge(k, v, link="+")
>>> c.centrality_degree()
>>> c.graph['graph'] = {"splines":"true", "size":(20,20),
 "dpi":200, "fixedsize":True}
>>> c.graph['node'] = {"width":.01, "height":.01,
 'size':0.01, "fontsize":8}
>>> c.plotdot(prog="fdp", node_attribute="degree")

[image: geneprof_network.png]

2.7.3. Integrating expression data in pathways

	References

	https://www.geneprof.org/GeneProf/media/recomb-2013/

This is another example from the reference above but based on tools available in bioservices so as to overlaid highthroughput gene expression
onto pathways and models from KEGG database.

Fold changes in lymphoma vs. kidney
on selected KEGG pathways

>>> from bioservices import KEGG, GeneProf, UniProt
>>> import StringIO
>>> import pandas
>>> g = GeneProf()
>>> k = KEGG()
>>> u = UniProt()

>>> # load ENCODE RNA-seq into a DataFrame for later
>>> data = g.get_data("11_683_28_1", "txt")
>>> rnaseq = pandas.read_csv(StringIO.StringIO(data), sep="\t")
>>> gene_names = rnaseq['Ensembl Gene ID']

>>> # get a pathway diagram for the KEGG path hsa05202 ("Transcriptional
>>> # misregulation in cancers")
>>> res = k.parse(k.get("hsa05202"))
>>> # extract KEGG identifiers corresponding to the genes found in the pathway
>>> keggids = ["hsa:"+x for x in res['GENE'].keys()]

>>> # we need to map the KEGG Ids to Ensembl Ids. We will use KEGG mapping and uniprot mapping
>>> # for cases where the former does not have associated mapping.
>>> ensemblids = {}
>>> for id_ in keggids:
... res = k.parse(k.get(id_))['DBLINKS']
... if 'Ensembl' in res.keys():
... print id_, res['Ensembl']
... ensemblids[id_] = res['Ensembl']
... else:
... if "UniProt" in res.keys():
... ids = res['UniProt'].split()[0]
... m = u.mapping("ACC", "ENSEMBL_ID", query=ids)
... if len(m): ensemblids[id_] = m[ids][0]
... pass # no links to ensembl DB found

>>> # what are the KEGG id transformed into Ensembl Ids that are in the ENCODE data set ?
>>> found = [x for x in ensemblids.values() if x in [str(y) for y in gene_names]]
>>> indices = [i for i, x in enumerate(rnaseq['Ensembl Gene ID']) if x in found]
>>>
>>> # now, we can pick out the log2 fold change values for visualization:
>>> data = rnaseq.ix[indices][['Ensembl Gene ID', 'log2FC Lymphoma / EmbryonicKidney']]
>>> # and keep only those that have a negative or positive value
>>> mid = 1.5
>>> low = data[data['log2FC Lymphoma / EmbryonicKidney']<-mid]
>>> geneid_low = list(low['Ensembl Gene ID'])
>>> up = data[data['log2FC Lymphoma / EmbryonicKidney']>mid]
>>> geneid_up = list(up['Ensembl Gene ID'])
>>> mid = data[abs(data['log2FC Lymphoma / EmbryonicKidney'])<mid]
>>> geneid_mid = list(mid['Ensembl Gene ID'])

>>> # now that we have the genes (in ensembl format), we need the kegg id
>>> keggid_low = [this for this in keggids if ensemblids[this] in geneid_low]
>>> keggid_mid = [this for this in keggids if ensemblids[this] in geneid_mid]
>>> keggid_up = [this for this in keggids if ensemblids[this] in geneid_up]
>>> # it is now time to look at the expression on the diagram
>>> colors = {}
>>> for id_ in keggids: colors[id_[4:]] = "gray,"
>>> for id_ in keggid_low: colors[id_[4:]] = "blue,"
>>> for id_ in keggid_up: colors[id_[4:]] = "orange,"
>>> for id_ in keggid_mid: colors[id_[4:]] = "yellow,"
>>> k.show_pathway("hsa05202", dcolor="white", keggid=colors)

The last command will popup the KEGG diagram with the expression data on top of the diagram, as shown in the following picture:

[image: geneprof_kegg_expression.png]

3. Combining BioServices with external tools

Contents

	Combining BioServices with external tools

	PYMOL

	BioPython

	Galaxy

This section shows how to use BioServices as an intermediate tool that fetch
data to be used by third-party software/application.

The external applications used in this section are not part of BioServices therefore we do not provide
instructions for the installation. Reader should refer to the application web
site instead (URLs are provided here below). However, we indicate the way we
installed them.

3.1. PYMOL

	URL

	http://www.pymol.org/

This example below uses the external software called PyMOL. We have installed it
without trouble by downloading the source file from their website. Then, we
typed those commands in a shell:

bunzip pymol-v1.6alpha1.tar.bz2
tar xvf pymol-v1.6alpha1.tar
cd pymol
python setup.py install

You may need to install library if requested. Tested under Fedora 15.

conda install -c schrodinger pymol-bundle

The following code uses BioServices to get the PDB Identifier of a protein
called ZAP70. To do so, we use bioservices.uniprot.UniProt to get its accession number (P43403) and its
PDB identifer. Then, we use bioservices.pdb.PDB to get the 3D structure in PDB
format.

The script above uses PyMOL in a script manner to save the 3D graphical representation of the protein (here below) but you could also
use PyMOL in an interactive mode.

[image: _images/pymol.png]

3.2. BioPython

	URL

	http://biopython.org/DIST/docs/tutorial/Tutorial.html#chapter:Bio.AlignIO

BioPython provides many tools for IO, algorithms and access to Web services.
BioServices provides access to many web services. This example shows how (i) to use
BioServices to retrieve FASTA files and (ii) BioPython to play with the
sequences.

Note

We assume you have installed BioPython (pip install biopython)

First, let us retrieve two FASTA sequences and save them in 2 files:

from bioservices import UniProt
u = UniProt()
akt1 = u.retrieve("P31749", "fasta")
akt2 = u.retrieve("P31751", "fasta")

fh = open("akt1.fasta", "w")
fh.write(akt1)
fh.close()

fh = open("akt2.fasta", "w")
fh.write(akt2)
fh.close()

Now, on the BioPython side, we read the 2 sequences and introspect them:

>>> from Bio import AlignIO
>>> record1 = SeqIO.read("akt1.fasta", "fasta")
>>> record2 = SeqIO.read("akt2.fasta", "fasta")
>>> record1 += "-" # this is to have 2 sequences on same length as requested by the following function

>>> alignment = AlignIO.MultipleSeqAlignment([])
>>> alignment.append(record1)
>>> alignment.append(record2)

>>> for record in alignment:
>>> print(description)
sp|P31749|AKT1_HUMAN RAC-alpha serine/threonine-protein kinase OS=Homo sapiens GN=AKT1 PE=1 SV=2
sp|P31751|AKT2_HUMAN RAC-beta serine/threonine-protein kinase OS=Homo sapiens GN=AKT2 PE=1 SV=2

You are ready to play with BioPython multiple alignment tools. Please consult
BioPython documentation for more examples.

3.3. Galaxy

	URL

	http://wiki.galaxyproject.org/FrontPage

	Date

	Aug 2013

Galaxy is an open, web-based platform for accessible, reproducible, and transparent computational biomedical research.
It provides worflows and plugins to many web resources.

This tutorial shows how to link bioservices and galaxy. Our tutorial will
provide a plugin to Galaxy so that a user can retrieve a FASTA file via
BioServices and the wrapping of UniProt Web Services.

We assume that you installed Galaxy on your system via the source code:

hg clone https://bitbucket.org/galaxy/galaxy-dist/
cd galaxy-dist
hg update stable

The tree directory should therefore contains a directory called tools/ and in
the main directory, an XML file called conf_tools.py

We will first create a plugin for bioservices. This is done by adding a
directory called bioservices in ./tools:

mkdir tools/bioservices

In this directory, we will create two files called uniprot.py that
will contain the actual code that calls bioservices and a second XML file that will
allows us to design the plugin layout.

Let us start with the plugin. It is very simple since only the UniProt Entry is
required. The output will simply be the FASTA file that would have been fetched.

The XML file is:

<tool id="bioservices_uniprot" name="Get FASTA" version="1.1.0">
 <description>from UniProt via Bioservices</description>
 <requirements>
 <requirement type="package">bioservices</requirement>
 </requirements>
 <command interpreter="python">uniprot.py $uniprot_id $output</command>
 <inputs>
 <param name="uniprot_id" type="text" label="UniProt ID" size="40" help="Provide a valid UniProt Entry (e.g. P43403) "/>
 </inputs>
 <outputs>
 <data format="fasta" name="output" />
 </outputs>
 <help>
Fetch a FASTA file using UniProt via BioServices. Simply provide a valid Uniprot Entry (e.g., P43403)
 </help>
</tool>

The python code will take as an input the UniProt ID and create a file that
contains the FASTA data:

import sys

def __main__():
 ids = sys.argv[1]
 filename = sys.argv[2]
 # TODO: check the validity and format ?
 try:
 from bioservices import UniProt
 u = UniProt(verbose=False)
 u.debugLevel = "ERROR"
 except ImportError:
 print("Could not import bioservoces ? Check that it is installed. Try 'pip install bioservices'")

 try:
 fasta = u.searchUniProtId(ids, "fasta")
 except:
 print("An error occured while fetching the FASTA file from uniprot")

 try:
 fh = open(filename, "w")
 fh.write(fasta)

finally, you need to make Galaxy aware of this new plugin. this is done in the
file called conf_tool.xml. Add bioservices plugin. The beginning of the file
should look like:

<?xml version="1.0"?>
 <toolbox>
 <section name="Get Data" id="getext">
 <tool file="bioservices/uniprot.xml"/>
 <tool file="data_source/upload.xml"/>
...

Once done. start you galaxy server. The following image show the outcome: in the
left hand side, you can select the bioservices plugin. Then, in the center, you
can enter a uniprot entry. Press the execute button and the new file should
appear in the right hand side. From there you can use Galaxy other tools to
analyse the file.

[image: _images/galaxy.png]
This example shows that it is possible to link Galaxy and BioServices to access
to various Web Services that are available through Bioservices.

3.3.1. PYMOL

	URL

	http://www.pymol.org/

This example below uses the external software called PyMOL. We have installed it
without trouble by downloading the source file from their website. Then, we
typed those commands in a shell:

bunzip pymol-v1.6alpha1.tar.bz2
tar xvf pymol-v1.6alpha1.tar
cd pymol
python setup.py install

You may need to install library if requested. Tested under Fedora 15.

conda install -c schrodinger pymol-bundle

The following code uses BioServices to get the PDB Identifier of a protein
called ZAP70. To do so, we use bioservices.uniprot.UniProt to get its accession number (P43403) and its
PDB identifer. Then, we use bioservices.pdb.PDB to get the 3D structure in PDB
format.

The script above uses PyMOL in a script manner to save the 3D graphical representation of the protein (here below) but you could also
use PyMOL in an interactive mode.

[image: _images/pymol.png]

3.3.2. BioPython

	URL

	http://biopython.org/DIST/docs/tutorial/Tutorial.html#chapter:Bio.AlignIO

BioPython provides many tools for IO, algorithms and access to Web services.
BioServices provides access to many web services. This example shows how (i) to use
BioServices to retrieve FASTA files and (ii) BioPython to play with the
sequences.

Note

We assume you have installed BioPython (pip install biopython)

First, let us retrieve two FASTA sequences and save them in 2 files:

from bioservices import UniProt
u = UniProt()
akt1 = u.retrieve("P31749", "fasta")
akt2 = u.retrieve("P31751", "fasta")

fh = open("akt1.fasta", "w")
fh.write(akt1)
fh.close()

fh = open("akt2.fasta", "w")
fh.write(akt2)
fh.close()

Now, on the BioPython side, we read the 2 sequences and introspect them:

>>> from Bio import AlignIO
>>> record1 = SeqIO.read("akt1.fasta", "fasta")
>>> record2 = SeqIO.read("akt2.fasta", "fasta")
>>> record1 += "-" # this is to have 2 sequences on same length as requested by the following function

>>> alignment = AlignIO.MultipleSeqAlignment([])
>>> alignment.append(record1)
>>> alignment.append(record2)

>>> for record in alignment:
>>> print(description)
sp|P31749|AKT1_HUMAN RAC-alpha serine/threonine-protein kinase OS=Homo sapiens GN=AKT1 PE=1 SV=2
sp|P31751|AKT2_HUMAN RAC-beta serine/threonine-protein kinase OS=Homo sapiens GN=AKT2 PE=1 SV=2

You are ready to play with BioPython multiple alignment tools. Please consult
BioPython documentation for more examples.

3.3.3. Galaxy

	URL

	http://wiki.galaxyproject.org/FrontPage

	Date

	Aug 2013

Galaxy is an open, web-based platform for accessible, reproducible, and transparent computational biomedical research.
It provides worflows and plugins to many web resources.

This tutorial shows how to link bioservices and galaxy. Our tutorial will
provide a plugin to Galaxy so that a user can retrieve a FASTA file via
BioServices and the wrapping of UniProt Web Services.

We assume that you installed Galaxy on your system via the source code:

hg clone https://bitbucket.org/galaxy/galaxy-dist/
cd galaxy-dist
hg update stable

The tree directory should therefore contains a directory called tools/ and in
the main directory, an XML file called conf_tools.py

We will first create a plugin for bioservices. This is done by adding a
directory called bioservices in ./tools:

mkdir tools/bioservices

In this directory, we will create two files called uniprot.py that
will contain the actual code that calls bioservices and a second XML file that will
allows us to design the plugin layout.

Let us start with the plugin. It is very simple since only the UniProt Entry is
required. The output will simply be the FASTA file that would have been fetched.

The XML file is:

<tool id="bioservices_uniprot" name="Get FASTA" version="1.1.0">
 <description>from UniProt via Bioservices</description>
 <requirements>
 <requirement type="package">bioservices</requirement>
 </requirements>
 <command interpreter="python">uniprot.py $uniprot_id $output</command>
 <inputs>
 <param name="uniprot_id" type="text" label="UniProt ID" size="40" help="Provide a valid UniProt Entry (e.g. P43403) "/>
 </inputs>
 <outputs>
 <data format="fasta" name="output" />
 </outputs>
 <help>
Fetch a FASTA file using UniProt via BioServices. Simply provide a valid Uniprot Entry (e.g., P43403)
 </help>
</tool>

The python code will take as an input the UniProt ID and create a file that
contains the FASTA data:

import sys

def __main__():
 ids = sys.argv[1]
 filename = sys.argv[2]
 # TODO: check the validity and format ?
 try:
 from bioservices import UniProt
 u = UniProt(verbose=False)
 u.debugLevel = "ERROR"
 except ImportError:
 print("Could not import bioservoces ? Check that it is installed. Try 'pip install bioservices'")

 try:
 fasta = u.searchUniProtId(ids, "fasta")
 except:
 print("An error occured while fetching the FASTA file from uniprot")

 try:
 fh = open(filename, "w")
 fh.write(fasta)

finally, you need to make Galaxy aware of this new plugin. this is done in the
file called conf_tool.xml. Add bioservices plugin. The beginning of the file
should look like:

<?xml version="1.0"?>
 <toolbox>
 <section name="Get Data" id="getext">
 <tool file="bioservices/uniprot.xml"/>
 <tool file="data_source/upload.xml"/>
...

Once done. start you galaxy server. The following image show the outcome: in the
left hand side, you can select the bioservices plugin. Then, in the center, you
can enter a uniprot entry. Press the execute button and the new file should
appear in the right hand side. From there you can use Galaxy other tools to
analyse the file.

[image: _images/galaxy.png]
This example shows that it is possible to link Galaxy and BioServices to access
to various Web Services that are available through Bioservices.

4. Developer Guide

4.1. Naming convention

To add a web services in BioServices, decide on a name for the python module. By
convention we have the module name in lower case. Internally, class uses
standard Python convention (Upper case for first letter).

The module name (e.g. uniprot) should be use to name the module (uniprot.py).

It will also be used to add a test or the continuous integration

4.2. Creating a service class (REST case)

You can test directly a SOAP/WSDL or REST service in a few lines. For instance,
to access to the biomart REST service, type:

>>> s = REST("BioMart" ,"http://www.biomart.org/biomart/martservice")

The first parameter is compulsary but can be any word. You can retrieve the base
URL by typing:

>>> s.url
'http://www.biomart.org/biomart/martservice'

and then send a request to retrieve registry information for instance (see
www.biomart.org.martservice.html for valid request:

>>> s.http_get("?type=registry")
<bioservices.xmltools.easyXML at 0x3b7a4d0>

The request method available from RESTService class concatenates the url and the
parameter provided so it request the “http://www.biomart.org.biomart/martservice” URL.

As a developer, you should ease the life of the user by wrapping up the previous
commands. An example of a BioMart class with a unique method dedicated to the
registry would look like:

>>> class BioMart(REST):
... def __init__(self):
... url = "http://www.biomart.org/biomart/martservice"
... super(BioMart, self).__init__("BioMart", url=url)
... def registry(self):
... ret = self.request("?type=registry")
... return ret

and you would use it as follows:

>>> s = BioMart()
>>> s.registry()
<bioservices.xmltools.easyXML at 0x3b7a4d0>

4.3. Creating a service class (WSDL case)

If a web service interface is not provided within bioservices, you can still
easily access its functionalities. As an example, let us look at the
Ontology Lookup service [http://www.ebi.ac.uk/ontology-lookup/WSDLDocumentation.do], which provides a
WSDL service. In order to easily access this service, use the WSDLService class as follows:

>>> from bioservices import WSDLService
>>> ols = WSDLService("OLS", "http://www.ebi.ac.uk/ontology-lookup/OntologyQuery.wsdl")

You can now see which methods are available:

>>> ols.wsdl_methods

and call one (getVersion) using the bioservices.services.WSDLService.serv():

>>> ols.serv.getVersion()

You can then look at something more complex and extract relevant information:

>>> [x.value for x in ols.serv.getOntologyNames()[0]]

Of course, you can add new methods to ease the access to any functionalities:

>>> ols.getOnlogyNames() # returns the values

Similarly to the previous case using REST, you can wrap this example into a
proper class.

4.4. Others

When wrapper a WSDL services, it may be difficult to know what parameters
to provide if the API doc is not clear. This can be known as follows using
the suds factory. In this previous examples, we could use:

>>> ols.suds.factory.resolver.find('getTermById')
<Element:0xa848b50 name="getTermById" />

For eutils, this was more difficult:

m1 = list(e.suds.wsdl.services[0].ports[0].methods.values())[2]
m1.soap.input.body.parts[0]
the service is in m1.soap.input.body.parts[0] check for the element in the
root attribute

4.5. suds and client auth

http://stackoverflow.com/questions/6277027/suds-over-https-with-cert

4.6. How to include tests ?

We use pytest. There are many web services included in BioServices. Consequently
there are many tests. It is common to have failed tests on Travis and the
continuous integration.

Some tests are known to be long or failing from time to time (e.g. service is
down).

When a test is known to fail sometimes, we can add this decorator:

@pytest.mark.flaky(max_runs=3, min_passes=1)

On travis we allows 8 failures.

For long tests, we allows 60s at most. You can mark a tests if you knw it will
fail on travis (e.g. too long):

pytest.mark.xfail

Finally, we skip some tests for some conditions:

skiptravis = pytest.mark.skipif("TRAVIS_PYTHON_VERSION" in os.environ,
 reason="On travis")
@skiptravis
def test():
 ...

4.7. Continuous integration

	add a test in ./test/webservices/test_**yourmodule**.py

2. add a continous integration file named after yourmodule.yml. See example
in .github/workflows/template.txt and replace __name__ by your module name

5. Gallery

[image: KEGG module example]
KEGG module example

 KEGG module example

Download all examples in Python source code: auto_examples_python.zip

Download all examples in Jupyter notebooks: auto_examples_jupyter.zip

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

5.1. KEGG module example

Histogram of KEGG pathways relations

[image: number of relations per pathways]Creating directory /home/docs/.cache/bioservices
Welcome to Bioservices
======================
It looks like you do not have a configuration file.
We are creating one with default values in /home/docs/.config/bioservices/bioservices.cfg .
Done
/home/docs/checkouts/readthedocs.org/user_builds/bioservices/envs/main/lib/python3.7/site-packages/bs4/builder/__init__.py:546: XMLParsedAsHTMLWarning: It looks like you're parsing an XML document using an HTML parser. If this really is an HTML document (maybe it's XHTML?), you can ignore or filter this warning. If it's XML, you should know that using an XML parser will be more reliable. To parse this document as XML, make sure you have the lxml package installed, and pass the keyword argument `features="xml"` into the BeautifulSoup constructor.
 XMLParsedAsHTMLWarning.MESSAGE, XMLParsedAsHTMLWarning

from pylab import *

extract all relations from all pathways
from bioservices.kegg import KEGG
s = KEGG()
s.organism = "hsa"

retrieve more than 260 pathways so it takes time
max_pathways = 10
results = [s.parse_kgml_pathway(x) for x in s.pathwayIds[0:max_pathways]]
relations = [x['relations'] for x in results]

plot
hist([len(this) for this in relations], 20)
xlabel('number of relations')
ylabel('#')
title("number of relations per pathways")
grid(True)

Total running time of the script: (0 minutes 14.214 seconds)

Download Python source code: plot_kegg_relations.py

Download Jupyter notebook: plot_kegg_relations.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

6. NoteBooks

ipython notebook can be downloaded from this section. You can either see the
results via nbviewer, or download and run them yourself. To do so, download the
notebook and open a shell where is saved the file. Type:

ipython notebook

You should see the notebook name. Click on it and you are ready to try. Cels can
be executed by typing CTRL+enter

6.1. UniProt

Here is a ipython notebook dedicated to UniProt, which can be
downloaded notebooks/UniProt.ipynb or view its results on
uniprot nbviewer [https://nbviewer.ipython.org/url/github.com/cokelaer/bioservices/blob/master/doc/notebooks/UniProt.ipynb]

6.2. BioModels

Here is a ipython notebook dedicated to BioModels, which can be
downloaded notebooks/BioModels.ipynb or view its results on
biomodels nbviewer [https://nbviewer.ipython.org/url/github.com/cokelaer/bioservices/blob/master/doc/notebooks/BioModels.ipynb]

6.3. ChEMBL

Here is a ipython notebook dedicated to ChEMBL, which can be
downloaded notebooks/ChEMBL.ipynb or view its results on
chembl nbviewer [https://nbviewer.ipython.org/github/cokelaer/bioservices/blob/master/doc/notebooks/ChEMBL.ipynb]

6.4. Entrez/Eutils

Here is a ipython notebook dedicated to EUtils, which can be
downloaded notebooks/Entrez_EUtils.ipynb or view its results on
eutil nbviewer [https://nbviewer.ipython.org/url/github.com/cokelaer/bioservices/blob/master/doc/notebooks/Entrez_EUtils.ipynb]

6.5. KEGG

Here is a ipython notebook dedicated to KEGG, which can be
downloaded notebooks/KEGG.ipynb or view its results on
kegg nbviewer [https://nbviewer.ipython.org/url/github.com/cokelaer/bioservices/blob/master/doc/notebooks/KEGG.ipynb]

6.6. MUSCLE

Here is a ipython notebook dedicated to MUSCLE, which can be
downloaded notebooks/MUSCLE.ipynb or view its results on
muscle nbviewer [https://nbviewer.ipython.org/url/github.com/cokelaer/bioservices/blob/master/doc/notebooks/MUSCLE.ipynb]

6.7. NCBIBlast

Here is a ipython notebook dedicated to NCBIblast, which can be
downloaded notebooks/NCBIBlast.ipynb or view its results on
ncbiblast nbviewer [https://nbviewer.ipython.org/url/github.com/cokelaer/bioservices/blob/master/doc/notebooks/NCBIBlast.ipynb]

6.8. WikiPathway

Here is a ipython notebook dedicated to WikiPathway, which can be
downloaded notebooks/WikiPathway.ipynb or view its results on
wikipathway nbviewer [https://nbviewer.ipython.org/url/github.com/cokelaer/bioservices/blob/master/doc/notebooks/WikiPathway.ipynb]

6.8.1. Gene Mapping

Here is a ipython notebook dedicated to Gene Mapping, which can be
downloaded notebooks/Gene_Mapping.ipynb or view its results on
gene mapping nbviewer [http://nbviewer.ipython.org/url/github.com/cokelaer/bioservices/blob/master/doc/notebooks/Gene_Mapping.ipynb]

6.8.2. BioMart

Here is a ipython notebook dedicated to BioMart, which can be
downloaded notebooks/BioMart or view its results on
chembl biomiart [https://nbviewer.ipython.org/url/github.com/cokelaer/bioservices/blob/master/doc/notebooks/BioMart.ipynb]

6.8.3. Ensembl

Here is a ipython notebook dedicated to Ensembl, which can be
downloaded notebooks/Ensembl.ipynb or view its results on
ensembl nbviewer [https://nbviewer.ipython.org/url/github.com/cokelaer/bioservices/blob/master/doc/notebooks/Ensembl.ipynb]

Contents

	Utilities

	Service module (REST or WSDL)

	xmltools module

	Services

	ArrayExpress

	Biocontainers

	BiGG

	BioDBnet

	BioGrid

	BioMart

	BioModels

	ChEBI

	ChEMBL

	COG

	ENA

	EUtils

	GeneProf

	QuickGO

	Kegg

	Some terminology

	KEGG Databases Names and Abbreviations

	Database Entries

	HGNC

	Intact (complex)

	MUSCLE

	MyGeneInfo

	NCBIblast

	OmniPath Commons

	Panther

	Pathway Commons

	PDB/PDBe modules

	PRIDE module

	PSICQUIC

	About queries

	About the MITAB output

	Rhea

	Reactome

	Readseq

	UniChem

	UniProt

	DBFetch

	Wikipathway

	Applications and extra tools

	Peptides

	FASTA

7. Utilities

7.1. Service module (REST or WSDL)

Modules with common tools to access web resources

	
exception BioServicesError(value)

	

	
class REST(name, url=None, verbose=True, cache=False, requests_per_sec=3, proxies=[], cert=None, url_defined_later=False)

	The ideas (sync/async) and code using requests were inspired from the chembl
python wrapper but significantly changed.

Get one value:

>>> from bioservices import REST
>>> s = REST("test", "https://www.ebi.ac.uk/chemblws")
>>> res = s.get_one("targets/CHEMBL2476.json", "json")
>>> res['organism']
u'Homo sapiens'

The caching has two major interests. First one is that it speed up requests if
you repeat requests.

>>> s = REST("test", "https://www.ebi.ac.uk/chemblws")
>>> s.CACHING = True
>>> # requests will be stored in a local sqlite database
>>> s.get_one("targets/CHEMBL2476")
>>> # Disconnect your wiki and any network connections.
>>> # Without caching you cannot fetch any requests but with
>>> # the CACHING on, you can retrieve previous requests:
>>> s.get_one("targets/CHEMBL2476")

Advantages of requests over urllib

requests length is not limited to 2000 characters
http://www.g-loaded.eu/2008/10/24/maximum-url-length/

There is no need for authentication if the web services available
in bioservices except for a few exception. In such case, the username and
password are to be provided with the method call. However,
in the future if a services requires authentication, one can set the
attribute authentication to a tuple:

s = REST()
s.authentication = ('user', 'pass')

Note about headers and content type. The Accept header is
used by HTTP clients to tell the server what content types
they will accept. The server will then send back a
response, which will include a Content-Type header telling
the client what the content type of the returned content
actually is. When using the get__headers(), you can see
the User-Agent, the Accept and Content-Type keys. So, here the
HTTP requests also contain Content-Type headers. In POST or PUT requests
the client is actually sendingdata to the server as part of the
request, and the Content-Type header tells the server what the data actually is
For a POST request resulting from an HTML form submission, the
Content-Type of the request should be one of the standard form content
types: application/x-www-form-urlencoded (default, older, simpler) or
multipart/form-data (newer, adds support for file uploads)

Constructor

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – a name for this service

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – its URL

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – prints informative messages if True (default is
True)

	requests_per_sec – maximum number of requests per seconds
are restricted to 3. You can change that value. If you reach the
limit, an error is raise. The reason for this limitation is
that some services (e.g.., NCBI) may black list you IP.
If you need or can do more (e.g., ChEMBL does not seem to have
restrictions), change the value. You can also have several instance
but again, if you send too many requests at the same, your future
requests may be retricted. Currently implemented for REST only

All instances have an attribute called logging that
is an instanceof the logging [https://docs.python.org/3/library/logging.html#module-logging] module. It can be used to print
information, warning, error messages:

self.logging.info("informative message")
self.logging.warning("warning message")
self.logging.error("error message")

The attribute debugLevel can be used to set the behaviour
of the logging messages. If the argument verbose is True, the debugLebel
is set to INFO. If verbose if False, the debugLevel is set to WARNING.
However, you can use the debugLevel attribute to change it to
one of DEBUG, INFO, WARNING, ERROR, CRITICAL. debugLevel=WARNING means
that only WARNING, ERROR and CRITICAL messages are shown.

	
property TIMEOUT

	

	
clear_cache()

	

	
content_types = {'bed': 'text/x-bed', 'default': 'application/x-www-form-urlencoded', 'fasta': 'text/x-fasta', 'gff3': 'text/x-gff3', 'gif': 'image/gif', 'jpeg': 'image/jpg', 'jpg': 'image/jpg', 'json': 'application/json', 'jsonp': 'text/javascript', 'nh': 'text/x-nh', 'phylip': 'text/x-phyloxml+xml', 'phyloxml': 'text/x-phyloxml+xml', 'png': 'image/png', 'seqxml': 'text/x-seqxml+xml', 'svg': 'image/svg', 'svg+xml': 'image/svg+xml', 'text': 'text/plain', 'txt': 'text/plain', 'xml': 'application/xml', 'yaml': 'text/x-yaml'}

	

	
debug_message()

	

	
delete_cache()

	

	
delete_one(query, frmt='json', **kargs)

	

	
getUserAgent()

	

	
get_async(keys, frmt='json', params={}, **kargs)

	

	
get_headers(content='default')

	
	Parameters

	content (str [https://docs.python.org/3/library/stdtypes.html#str]) – set to default that is application/x-www-form-urlencoded
so that it has the same behaviour as urllib2 (Sept 2014)

	
get_one(query=None, frmt='json', params={}, **kargs)

	if query starts with http:// do not use self.url

	
get_sync(keys, frmt='json', **kargs)

	

	
http_delete(query, params=None, frmt='xml', headers=None, **kargs)

	

	
http_get(query, frmt='json', params={}, **kargs)

	
	query is the suffix that will be appended to the main url attribute.

	query is either a string or a list of strings.

	if list is larger than ASYNC_THRESHOLD, use asynchronous call.

	
http_post(query, params=None, data=None, frmt='xml', headers=None, files=None, content=None, **kargs)

	

	
post_one(query=None, frmt='json', **kargs)

	

	
property session

	

	
class Service(name, url=None, verbose=True, requests_per_sec=10, url_defined_later=False)

	Base class for WSDL and REST classes

See also

REST, WSDLService

Constructor

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – a name for this service

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – its URL

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – prints informative messages if True (default is
True)

	requests_per_sec – maximum number of requests per seconds
are restricted to 3. You can change that value. If you reach the
limit, an error is raise. The reason for this limitation is
that some services (e.g.., NCBI) may black list you IP.
If you need or can do more (e.g., ChEMBL does not seem to have
restrictions), change the value. You can also have several instance
but again, if you send too many requests at the same, your future
requests may be retricted. Currently implemented for REST only

All instances have an attribute called logging that
is an instanceof the logging [https://docs.python.org/3/library/logging.html#module-logging] module. It can be used to print
information, warning, error messages:

self.logging.info("informative message")
self.logging.warning("warning message")
self.logging.error("error message")

The attribute debugLevel can be used to set the behaviour
of the logging messages. If the argument verbose is True, the debugLebel
is set to INFO. If verbose if False, the debugLevel is set to WARNING.
However, you can use the debugLevel attribute to change it to
one of DEBUG, INFO, WARNING, ERROR, CRITICAL. debugLevel=WARNING means
that only WARNING, ERROR and CRITICAL messages are shown.

	
property CACHING

	

	
easyXML(res)

	
	Use this method to convert a XML document into an
	easyXML object

The easyXML object provides utilities to ease access to the XML
tag/attributes.

Here is a simple example starting from the following XML

>>> from bioservices import *
>>> doc = "<xml> <id>1</id> <id>2</id> </xml>"
>>> s = Service("name")
>>> res = s.easyXML(doc)
>>> res.findAll("id")
[<id>1</id>, <id>2</id>]

	
property easyXMLConversion

	If True, xml output from a request are converted to easyXML object (Default behaviour).

	
on_web(url)

	Open a URL into a browser

	
pubmed(Id)

	Open a pubmed Id into a browser tab

	Parameters

	Id – a valid pubmed Id in string or integer format.

The URL is a concatenation of the pubmed URL
http://www.ncbi.nlm.nih.gov/pubmed/ and the provided Id.

	
response_codes = {200: 'OK', 201: 'Created', 400: 'Bad Request. There is a problem with your input', 404: 'Not found. The resource you requests does not exist', 405: 'Method not allowed', 406: 'Not Acceptable. Usually headers issue', 410: 'Gone. The resource you requested was removed.', 415: 'Unsupported Media Type', 500: 'Internal server error. Most likely a temporary problem', 503: 'Service not available. The server is being updated, try again later'}

	some useful response codes

	
save_str_to_image(data, filename)

	Save string object into a file converting into binary

	
property url

	URL of this service

	
class WSDLService(name, url, verbose=True, cache=False)

	Class dedicated to the web services based on WSDL/SOAP protocol.

See also

RESTService, Service

Constructor

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – a name e.g. Kegg, Reactome, …

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – the URL of the WSDL service

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – prints informative messages

The serv give access to all WSDL functionalities of the service.

The methods is an alias to self.serv.methods and returns
the list of functionalities.

	
property TIMEOUT

	

	
wsdl_create_factory(name, **kargs)

	

	
property wsdl_methods

	returns methods available in the WSDL service

	
wsdl_methods_info()

	

7.2. xmltools module

This module includes common tools to manipulate XML files

	
class easyXML(data, encoding='utf-8')

	class to ease the introspection of XML documents.

This class uses the standard xml module as well as the package BeautifulSoup
to help introspecting the XML documents.

>>> from bioservices import *
>>> n = ncbiblast.NCBIblast()
>>> res = n.getParameters() # res is an instance of easyXML
>>> # You can retreive XML from this instance of easyXML and print the content
>>> # in a more human-readable way.
>>> res.soup.findAll('id') # a Beautifulsoup instance is available
>>> res.root # and the root using xml.etree.ElementTree

There is a getitem so you can type:

res['id']

which is equivalent to:

res.soup.findAll('id')

There is also aliases findAll and prettify.

Constructor

	Parameters

	
	data – an XML document format

	fixing_unicode – use only with HGNC service to fix issue with the
XML returned by that particular service. No need to use otherwise.
See HGNC documentation for details.

	encoding – default is utf-8 used. Used to fix the HGNC XML only.

The data parameter must be a string containing the XML document. If you
have an URL instead, use readXML

	
getchildren()

	returns all children of the root XML document

This is just an alias to self.soup.getchildren()

	
property soup

	Returns the beautiful soup instance

	
class readXML(url, encoding='utf-8')

	Read XML and converts to beautifulsoup data structure

easyXML accepts as input a string. This class accepts a filename instead
inherits from easyXML

See also

easyXML

Constructor

	Parameters

	
	data – an XML document format

	fixing_unicode – use only with HGNC service to fix issue with the
XML returned by that particular service. No need to use otherwise.
See HGNC documentation for details.

	encoding – default is utf-8 used. Used to fix the HGNC XML only.

The data parameter must be a string containing the XML document. If you
have an URL instead, use readXML

8. Services

8.1. ArrayExpress

8.2. Biocontainers

Interface to biocontainer

What is biocontainers

	URL

	https://biocontainers.pro/

	Citation

	

BioContainers is an open-source project that aims to create,
store, and distribute bioinformatics software containers and
packages.

—From biocontainers (about), Jan 2021

	
class Biocontainers(verbose=True, cache=False)

	Interface to Biocontainers service

>>> from bioservics import Biocontainers
>>> b = Biocontainers()
>>> b.get_tools()

Constructor

	Parameters

	verbose – set to False to prevent informative messages

	
get_stats()

	Returns some stats about numer of versions and tools

	
get_tools(limit=20000)

	Returns all available tools.

	
get_versions_one_tool(tool)

	Returns all versions of a given tool.

8.3. BiGG

Interface to the BiGG Models API Service

What is BiGG Models?

	URL

	http://bigg.ucsd.edu

	REST

	http://bigg.ucsd.edu/api/v2

“BiGG Models is a knowledgebase of genome-scale metabolic network reconstructions. BiGG Models integrates more than 70 published genome-scale metabolic networks into a single database with a set of standardized identifiers called BiGG IDs. Genes in the BiGG models are mapped to NCBI genome annotations, and metabolites are linked to many external databases (KEGG, PubChem, and many more).”

—BiGG Models Home Page, March 10, 2020.

	
class BiGG(verbose=False, cache=False)

	Interface to the BiGG Models <http://bigg.ucsd.edu/> API Service.

>>> from bioservices import BiGG
>>> bigg = BiGG()
>>> bigg.search("e coli", "models")
[{'bigg_id': 'e_coli_core',
 'gene_count': 137,
 'reaction_count': 95,
 'organism': 'Escherichia coli str. K-12 substr. MG1655',
 'metabolite_count': 72},
 ...
]

	
download(model_id, format_='json', gzip=True, target=None)

	

	
genes(model_id, ids=None)

	

	
metabolites(model_id=None, ids=None)

	

	
property models

	

	
reactions(model_id=None, ids=None)

	

	
search(query, type_)

	

	
property version

	

8.4. BioDBnet

This module provides a class BioDBNet to access to BioDBNet WS.

What is BioDBNet ?

	URL

	http://biodbnet.abcc.ncifcrf.gov/

	Service

	http://biodbnet.abcc.ncifcrf.gov/webServices

	Citations

	Mudunuri,U., Che,A., Yi,M. and Stephens,R.M. (2009) bioDBnet: the biological database network. Bioinformatics, 25, 555-556

“BioDBNet Database is a repository hosting computational models of biological
systems. A large number of the provided models are published in the
peer-reviewed literature and manually curated. This resource allows biologists
to store, search and retrieve mathematical models. In addition, those models can
be used to generate sub-models, can be simulated online, and can be converted
between different representational formats. “

—From BioDBNet website, Dec. 2012

New in version 1.2.3.

Section author: Thomas Cokelaer, Feb 2014

	
class BioDBNet(verbose=True, cache=False)

	Interface to the BioDBNet [http://biodbnet.abcc.ncifcrf.gov/] service

>>> from bioservices import *
>>> s = BioDBNet()

Most of the BioDBNet WSDL are available. There are functions added to
the original interface such as extra_getReactomeIds().

Use db2db() to convert from 1 database to some databases.
Use dbReport() to get the convertion from one database to all
databases.

Constructor

	Parameters

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
db2db(input_db, output_db, input_values, taxon=9606)

	Retrieves models associated to the provided Taxonomy text.

	Parameters

	
	input_db – input database.

	output_db – list of databases to map to.

	input_values – list of identifiers to map to the output databases

	Returns

	dataframe where index correspond to the input database
identifiers. The columns contains the identifiers for each output
database (see example here below).

>>> from bioservices import BioDBNet
>>> input_db = 'Ensembl Gene ID'
>>> output_db = ['Gene Symbol']
>>> input_values = ['ENSG00000121410', 'ENSG00000171428']
>>> df = s.db2db(input_db, output_db, input_values, 9606)
 Gene Symbol
Ensembl Gene ID
ENSG00000121410 A1BG
ENSG00000171428 NAT1

	
dbFind(output_db, input_values, taxon='9606')

	dbFind method

dbFind can be used when you do not know the actual type of your identifiers or
when you have a mixture of different types of identifiers. The tool finds the
identifier type and converts them into the selected output if the identifiers
are within the network.

	Parameters

	
	output_db (str [https://docs.python.org/3/library/stdtypes.html#str]) – valid database name

	input_values (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of identifiers to look for

	Returns

	a dataframe with index set to the input values.

>>> b.dbFind("Gene ID", ["ZMYM6_HUMAN", "NP_710159", "ENSP00000305919"])
 Gene ID Input Type
InputValue
ZMYM6_HUMAN 9204 UniProt Entry Name
NP_710159 203100 RefSeq Protein Accession
ENSP00000305919 203100 Ensembl Protein ID

	
dbOrtho(input_db, output_db, input_values, input_taxon, output_taxon)

	Convert identifiers from one species to identifiers of a different species

	Parameters

	
	input_db – input database

	output_db – output database

	input_values – list of identifiers to retrieve

	input_taxon – input taxon

	output_taxon – output taxon

	Returns

	dataframe where index correspond to the input database
identifiers. The columns contains the identifiers for each output
database (see example here below)

>>> df = b.dbOrtho("Gene Symbol", "Gene ID", ["MYC", "MTOR", "A1BG"],
... input_taxon=9606, output_taxon=10090)
 Gene ID InputValue
0 17869 MYC
1 56717 MTOR
2 117586 A1BG

	
dbReport(input_db, input_values, taxon=9606)

	Same as db2db() but returns results for all possible outputs.

	Parameters

	
	input_db – input database

	input_values – list of identifiers to retrieve

	Returns

	dataframe where index correspond to the input database
identifiers. The columns contains the identifiers for each output
database (see example here below)

df = s.dbReport("Ensembl Gene ID", ['ENSG00000121410', 'ENSG00000171428'])

	
dbWalk(db_path, input_values, taxon=9606)

	Walk through biological database network

dbWalk is a form of database to database conversion where the user has complete
control on the path to follow while doing the conversion. When a input/node is
added to the path the input selection gets updated with all the nodes that it
can access directly.

	Parameters

	
	db_path – path to follow in the databases

	input_values – list of identifiers

	Returns

	a dataframe with columns corresponding to the path nodes

A typical example is to get the Ensembl mouse homologs for
Ensembl Gene ID’s from human. This conversion is not possible
through db2db() as Homologene does not have
Ensembl ID’s and the input and output nodes to acheive this would both be
‘Ensembl Gene ID’. It can however be run by using dbWalk as follows.
Add Ensembl Gene ID to the path, then add Gene Id, Homolog - Mouse Gene ID
and Ensebml Gene ID to complete the path.

db_path = "Ensembl Gene ID->Gene ID->Homolog - Mouse Gene ID->Ensembl Gene ID"
s.dbWalk(db_path, ["ENSG00000175899"])

Todo

check validity of the path

	
getDirectOutputsForInput(input_db)

	Gets all the direct output nodes for a given input node

Gets all the direct output nodes for a given input node
Outputs reachable by single edge connection in the bioDBnet graph.

b.getDirectOutputsForInput("genesymbol")
b.getDirectOutputsForInput("Gene Symbol")
b.getDirectOutputsForInput("pdbid")
b.getDirectOutputsForInput("PDB ID")

	
getInputs()

	Return list of possible input database

s.getInputs()

	
getOutputsForInput(input_db)

	Return list of possible output database for a given input database

s.getOutputsForInput("UniProt Accession")

8.5. BioGrid

This module provides a class BioGrid.

What is BioGrid ?

	URL

	http://thebiogrid.org/

	Service

	Via the PSICQUIC class

BioGRID is an online interaction repository with data compiled through
comprehensive curation efforts. Our current index is version 3.2.97 and searches
37,954 publications for 638,453 raw protein and genetic interactions from major
model organism species. All interaction data are freely provided through our
search index and available via download in a wide variety of standardized
formats.

—From BioGrid website, Feb. 2013

	
class BioGRID(query=None, taxId=None, exP=None)

	Interface to BioGRID.

>>> from bioservices import BioGRID
>>> b = BioGRID(query=["map2k4","akt1"],taxId = "9606")
>>> interactors = b.biogrid.interactors

Examples:

>>> from bioservices import BioGRID
>>> b = BioGRID(query=["mtor","akt1"],taxId="9606",exP="two hybrid")
>>> b.biogrid.interactors

One can also query an entire organism, by using the taxid as the query:

>>> b = BioGRID(query="6239")

8.6. BioMart

This module provides a class BioModels that allows an easy access
to all the BioModel service.

What is BioMart ?

	URL

	http://www.biomart.org/

	REST

	http://www.biomart.org/martservice.html

The BioMart project provides free software and data services to the
international scientific community in order to foster scientific collaboration
and facilitate the scientific discovery process. The project adheres to the open
source philosophy that promotes collaboration and code reuse.

—from BioMart March 2013

Note

SOAP and REST are available. We use REST for the wrapping.

	
class BioMart(host=None, verbose=False, cache=False, secure=False)

	Interface to the BioMart [http://www.biomart.org] service

BioMart is made of different views. Each view correspond to a specific MART.
For instance the UniProt service has a BioMart view [http://www.ebi.ac.uk/uniprot/biomart/martview/].

The registry can help to find the different services available through
BioMart.

>>> from bioservices import *
>>> s = BioMart()
>>> ret = s.registry() # to get information about existing services

The registry is a list of dictionaries. Some aliases are available to get
all the names or databases:

>>> s.names # alias to list of valid service names from registry
>>> "unimart" in s.names
True

Once you selected a view, you will want to select a database associated with
this view and then a dataset. The datasets can be retrieved as follows:

>>> s.datasets("prod-intermart_1") # retrieve datasets available for this mart

The main issue is how to figure out the database name (here prod-intermart_1) ?
Indeed, from the web site, what you see is the displayName and you must
introspect the registry to get this information. In BioServices, we provide
the lookfor() method to help you. For instance, to
retrieve the database name of interpro, type:

>>> s = BioMart(verbose=False)
>>> s.lookfor("interpro")
Candidate:
 database: intermart_1
 MART name: prod-intermart_1
 displayName: INTERPRO (EBI UK)
 hosts: www.ebi.ac.uk

The display name (INTERPRO) correspond to the MART name
prod-intermart_1. Let us you it to retrieve the datasets:

>>> s.datasets("prod-intermart_1")
['protein', 'entry', 'uniparc']

Now that we have the dataset names, we can select one and build a
query. Queries are XML that contains the dataset name, some
attributes and filters. The dataset name is one of the element
returned by the datasets method. Let us suppose that we want to query
protein, we need to add this dataset to the query:

>>> s.add_dataset_to_xml("protein")

Then, you can add attributes (one of the keys of the dictionary
returned by attributes(“protein”):

>>> s.add_attribute_to_xml("protein_accession")

Optional filters can be used:

>>> s.add_filter_to_xml("protein_length_greater_than", 1000)

Finally, you can retrieve the XML query:

>>> xml_query = s.get_xml()

and send the request to biomart:

>>> res = s.query(xml_query)
>>> len(res)
12801
print the first 10 accession numbers
>>> res = res.split("\n")
>>> for x in res[0:10]: print(x)
['P18656',
 'Q81998',
 'O09585',
 'O77624',
 'Q9R3A1',
 'E7QZH5',
 'O46454',
 'Q9T3F4',
 'Q9TCA3',
 'P72759']

REACTOME example:

s.lookfor("reactome")
s.datasets("REACTOME")
['interaction', 'complex', 'reaction', 'pathway']

s.new_query()
s.add_dataset_to_xml("pathway")
s.add_filter_to_xml("species_selection", "Homo sapiens")
s.add_attribute_to_xml("pathway_db_id")
s.add_attribute_to_xml("_displayname")
xmlq = s.biomartQuery.get_xml()
res = s.query(xmlq)

Note

the biomart sevice is slow (in my experience, 2013-2014) so please be patient…

Constructor

URL required to use biomart change quite often. Experience has
shown that BioMart class in Bioservices may fail. This is not a
bioservices issue but due to API changes on server side.

For that reason the host is not filled anymore and one must set it
manually.

Let us take the example of the ensembl biomart. The host is

www.ensembl.org

Note that there is no prefix http and that the actual URL looked for
internally is http://www.ensembl.org/biomart/martview

(It used to be martservice in 2012-2016)

Another reason to not set any default host is that servers may be busy or
take lots of time to initialise (if many MARTS are available). Usually,
one knows which MART to look at, in which case you may want to use a
specific host (e.g., www.ensembl.org) that will speed up significantly the
initialisation time.

	Parameters

	host (str [https://docs.python.org/3/library/stdtypes.html#str]) – a valid host (e.g. “www.ensembl.org”, gramene.org)

List of databases are available in this webpage http://www.biomart.org/community.html

	
add_attribute_to_xml(name, dataset=None)

	

	
add_dataset_to_xml(dataset)

	

	
add_filter_to_xml(name, value, dataset=None)

	

	
attributes(dataset)

	to retrieve attributes available for a dataset:

	Parameters

	dataset (str [https://docs.python.org/3/library/stdtypes.html#str]) – e.g. oanatinus_gene_ensembl

	
configuration(dataset)

	to retrieve configuration available for a dataset:

	Parameters

	dataset (str [https://docs.python.org/3/library/stdtypes.html#str]) – e.g. oanatinus_gene_ensembl

	
create_attribute(name, dataset=None)

	

	
create_filter(name, value, dataset=None)

	

	
custom_query(**args)

	

	
property databases

	list of valid datasets

	
datasets(mart, raw=False)

	to retrieve datasets available for a mart:

	Parameters

	mart (str [https://docs.python.org/3/library/stdtypes.html#str]) – e.g. ensembl. see names for a list of valid
MART names the mart is the database. see lookfor method or
databases attributes

>>> s = BioMart(verbose=False)
>>> s.datasets("prod-intermart_1")
['protein', 'entry', 'uniparc']

	
property displayNames

	list of valid datasets

	
filters(dataset)

	to retrieve filters available for a dataset:

	Parameters

	dataset (str [https://docs.python.org/3/library/stdtypes.html#str]) – e.g. oanatinus_gene_ensembl

>>> s.filters("uniprot").split("\n")[1].split("\t")
>>> s.filters("pathway")["species_selection"]
[Arabidopsis thaliana,Bos taurus,Caenorhabditis elegans,Canis familiaris,Danio
rerio,Dictyostelium discoideum,Drosophila melanogaster,Escherichia coli,Gallus
gallus,Homo sapiens,Mus musculus,Mycobacterium tuberculosis,Oryza
sativa,Plasmodium falciparum,Rattus norvegicus,Saccharomyces
cerevisiae,Schizosaccharomyces pombe,Staphylococcus aureus N315,Sus
scrofa,Taeniopygia guttata ,Xenopus tropicalis]

	
get_datasets(mart)

	Retrieve datasets with description

	
get_xml()

	

	
property host

	

	
property hosts

	list of valid hosts

	
lookfor(pattern, verbose=True)

	

	
property marts

	list of marts

	
property names

	list of valid datasets

	
new_query()

	

	
query(xmlq)

	Send a query to biomart

The query must be formatted in a XML format which looks like (
example from https://gist.github.com/keithshep/7776579):

<?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE Query>
 <Query virtualSchemaName="default" formatter="CSV" header="0" uniqueRows="0" count="" datasetConfigVersion="0.6">
 <Dataset name="mmusculus_gene_ensembl" interface="default">
 <Filter name="ensembl_gene_id" value="ENSMUSG00000086981"/>
 <Attribute name="ensembl_gene_id"/>
 <Attribute name="ensembl_transcript_id"/>
 <Attribute name="transcript_start"/>
 <Attribute name="transcript_end"/>
 <Attribute name="exon_chrom_start"/>
 <Attribute name="exon_chrom_end"/>
 </Dataset>
 </Query>

Warning

the input XML must be valid. THere is no validation made
in thiss method.

	
registry()

	to retrieve registry information

the XML contains list of children called MartURLLocation made
of attributes. We parse the xml to return a list of dictionary.
each dictionary correspond to one MART.

aliases to some keys are provided: names, databases, displayNames

	
property valid_attributes

	list of valid datasets

	
version(mart)

	Returns version of a mart

	Parameters

	mart (str [https://docs.python.org/3/library/stdtypes.html#str]) – e.g. ensembl

8.7. BioModels

This module provides a class BioModels to access to BioModels WS.

What is BioModels ?

	URL

	http://www.ebi.ac.uk/biomodels/

	Service

	http://www.ebi.ac.uk/biomodels

	Citations

	please visit https://www.ebi.ac.uk/biomodels/citation for details

“BioModels is a repository of mathematical models of biological and biomedical
systems. It hosts a vast selection of existing literature-based physiologically
and pharmaceutically relevant mechanistic models in standard formats. Our
mission is to provide the systems modelling community with reproducible,
high-quality, freely-accessible models published in the scientific literature.”

—From BioModels website, March 2020

	
class BioModels(verbose=True)

	Interface to the BioModels [http://www.ebi.ac.uk/biomodels] service

from bioservices import BioModels
bm = BioModels()
model = bm.get_model('BIOMD0000000299')

Previous API had several functions such as getAuthorsByModelId. This is
easy to mimic with the new API:

bm = BioModels()
models = bm.get_all_models()
[x['submitter'] for x in res if x[] == "MODEL1204280003"][0]

This is also true for getDateLastModifByModelId and getModelNameById if
one use the field lastModified or name. There was the ability to
search for models based on their CHEBI identifiers, which is not
supported anymore; this concerns functions
getModelsIdByChEBI, getModelsIdByChEBIId, getSimpleModelsByChEBIIds,
getSimpleModelsRelatedWithChEBI. For other searches related to Reactome,
Uniprot identifiers or GO terms, the search() method should work:

bm.search("P10113")
bm.search("REACT_33")
bm.search("GO:0006919")

constructor

	Parameters

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
get_all_models(chunk=100)

	Return all models

	
get_model(model_id, frmt='json')

	Fetch information about a given model at a particular revision.

	
get_model_download(model_id, filename=None, output_filename=None)

	Download a particular file associated with a given model or all its
files as a COMBINE archive.

	Parameters

	
	model_id – a valid BioModels identifier

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – this is the requested filename to be found in the
model

	output_filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – if you request a different output filename,
use this parameter

	frmt – format of the output (json, xml, html)

	Returns

	nothing. This function save the model into a ZIP file called
after the model identifier. If parameter filename is specified,
then the output file is the requested filename (if found)

bm.get_model_download("BIOMD0000000100", filename="BIOMD0000000100.png")
bm.get_model_download("BIOMD0000000100")

This function can retrieve all files in a ZIP archive or a single image.
In the example below, we retrieve the PNG and plot it using matplotlib.
Using your favorite image viewver, you should get a better resolution.
Or just download the SVG version of the model.

from bioservices import BioModels
bm = BioModels()
from easydev import TempFile
with TempFile(suffix=".png") as fout:
 bm.get_model_download("BIOMD0000000100",
 filename="BIOMD0000000100.png",
 output_filename=fout.name)
 from pylab import imshow, imread
 imshow(imread(fout.name), aspect="auto")

(Source code, png, hires.png, pdf)

[image: _images/references-1.png]

	
get_model_files(model_id, frmt='json')

	Extract metadata information of model files of a particular model

	Parameters

	
	model_id – a valid BioModels identifier

	frmt – format of the output (json, xml)

	
get_p2m_missing(frmt='json')

	Retrieve all models in Path2Models that are now only available indirectly,
through the representative model for the corresponding genus

	Parameters

	frmt (str [https://docs.python.org/3/library/stdtypes.html#str]) – the format of the result (xml, csv, json)

	Returns

	list of model identifiers

	
get_p2m_representative(model, frmt='json')

	Retrieve a representative model in Path2Models

Get the representative model identifier for a given missing model in Path2Models.
This endpoint accepts as parameters a mandatory model identifier and an
optional response format

	Parameters

	
	model (str [https://docs.python.org/3/library/stdtypes.html#str]) – The identifier of a model of interest

	frmt (str [https://docs.python.org/3/library/stdtypes.html#str]) – the format of the result (xml, csv, json)

	
get_p2m_representatives(models, frmt='json')

	Find the replacement accessions for a set of Path2Models entries

Get the representative model identifiers of a set of given missing
models in Path2Models. This end point expects a comma-separated list of model
identifiers (without any surrounding whitespace) and an optional response
format. Examples: BMID000000112902, BMID000000009880, BMID000000027397.

	Parameters

	
	model (str [https://docs.python.org/3/library/stdtypes.html#str]) – The model identifiers separated by commas, or as a
list.

	frmt (str [https://docs.python.org/3/library/stdtypes.html#str]) – the format of the result (xml, csv, json)

from bioservices import BioModels
bm = BioModels()
bm.get_p2m_representatives("BMID000000112902, BMID000000009880, BMID000000027397")

	
get_pdgsmm_missing(frmt='json')

	Retrieve the identifiers of all PDGSMM entries that are no longer directly accessible

	Parameters

	frmt (str [https://docs.python.org/3/library/stdtypes.html#str]) – the format of the result (xml, csv, json)

	Returns

	list of model identifiers

	
get_pdgsmm_representative(model, frmt='json')

	Retrieve a representative model in PDGSMM

Get the representative model identifier for a given missing model in
PDGSMM. This endpoint accepts as parameters a mandatory model identifier and an
optional response format.

	Parameters

	
	model (str [https://docs.python.org/3/library/stdtypes.html#str]) – The identifier of a model of interest

	frmt (str [https://docs.python.org/3/library/stdtypes.html#str]) – the format of the result (xml, csv, json)

	
get_pdgsmm_representatives(models, frmt='json')

	Find the replacement accessions for a set of PDFSSM

Get the representative model identifiers of a set of given missing
models in PDGSMM. This end point expects a comma-separated list of model
identifiers (without any surrounding whitespace) and an optional response
format. Examples: MODEL1707110145,MODEL1707112456,MODEL1707115900.

	Parameters

	
	model (str [https://docs.python.org/3/library/stdtypes.html#str]) – The model identifiers separated by commas, or as a
list.

	frmt (str [https://docs.python.org/3/library/stdtypes.html#str]) – the format of the result (xml, csv, json)

	
search(query, offset=None, numResults=None, sort=None, frmt='json')

	Search models of interest via keywords.

Examples: PUBMED:”27869123” to search models associated with the PubMed
record identified by 27869123.

	Parameters

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – search query. colon character must be escaped

	offset (int [https://docs.python.org/3/library/functions.html#int]) – number of items to skip before starting to collect the
result set

	numResults (int [https://docs.python.org/3/library/functions.html#int]) – number of items to return

	sort (str [https://docs.python.org/3/library/stdtypes.html#str]) – sort criteria in {id-asc, relevance-asc, relevance-desc,
first_author-asc, first_author, name-asc, name-desc,
publication_year-asc, publication_year-desc}

	frmt (str [https://docs.python.org/3/library/stdtypes.html#str]) – format of the output (json, xml)

	
search_download(models, output_filename='models.zip', force=False)

	Returns models (XML) corresponding to a list of model identifiers.

	Parameters

	
	models (str [https://docs.python.org/3/library/stdtypes.html#str]) – list of model identifiers using comma to separate
them. Could be a list of string (e.g ‘BIOMD1,BIOMD2’ or [‘BIOMD1’,
‘BIOMD2’]

	output_filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – file used to save the models. This is a
zipped file. If the file exists, you must use the force* parameter

Todo

if no models are found (typos), an error message is printed.
if one model is not found, there is no warning or errors. Could be
nice to have a warning by introspecting the number of models in the
output file

	
search_parameter(query, start=0, size=10, sort=None, frmt='json')

	Search for parameters of a model

Details BioModels Parameters is a resource that facilitates easy
search and retrieval of parameter values used in the SBML models stored in the
BioModels repository. Users can search for a model entity (e.g. a protein or
drug) to retrieve the rate equations describing it; the associated parameter
values and the initial concentration from the SBML models in BioModels. Although
these data are directly extracted from the curated SBML models, they are not
individually curated or validated; rather presented as such in the table below.
Hence BioModels Parameters table will only provide a quick overview of available
parameter values for guidance and original model should be referred to
understand the complete context of the parameter usage.

	Parameters

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – A query to search against the model parameter values.

	start (int [https://docs.python.org/3/library/functions.html#int]) – if is the offset of the result set (default 0)

	size (int [https://docs.python.org/3/library/functions.html#int]) – number of items to display per page

	sort (str [https://docs.python.org/3/library/stdtypes.html#str]) – model or entity

	frmt (str [https://docs.python.org/3/library/stdtypes.html#str]) – the format of the result (xml, csv, json)

bm.search_parameter("MAPK", size=100, sort="entity")

8.8. ChEBI

This module provides a class ChEBI

What is ChEBI

	URL

	https://www.ebi.ac.uk/chebi/init.do

	WSDL

	http://www.ebi.ac.uk/webservices/chebi/2.0/webservice

“The database and ontology of Chemical Entities of Biological Interest

—From ChEBI web page June 2013

	
class ChEBI(verbose=False)

	Interface to ChEBI [http://www.ebi.ac.u.k/chebi/init.do]

>>> from bioservices import *
>>> ch = ChEBI()
>>> res = ch.getCompleteEntity("CHEBI:27732")
>>> res.smiles
CN1C(=O)N(C)c2ncn(C)c2C1=O

Constructor

	Parameters

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
conv(chebiId, target)

	Calls getCompleteEntity() and returns the identifier of a given database

	Parameters

	
	chebiId (str [https://docs.python.org/3/library/stdtypes.html#str]) – a valid ChEBI identifier (string)

	target – the identifier of the database

	Returns

	the identifier

>>> ch.conv("CHEBI:10102", "KEGG COMPOUND accession")
['C07484']

	
getAllOntologyChildrenInPath(chebiId, relationshipType, onlyWithChemicalStructure=False)

	Retrieves the ontology children of an entity including the relationship type

	Parameters

	
	chebiId (str [https://docs.python.org/3/library/stdtypes.html#str]) – a valid ChEBI identifier (string)

	relationshipType (str [https://docs.python.org/3/library/stdtypes.html#str]) – one of “is a”, “has part”, “has role”,
“is conjugate base of”, “is conjugate acid of”, “is tautomer of”
“is enantiomer of”, “has functional parent” “has parent hybride”
“is substituent group of”

>>> ch.getAllOntologyChildrenInPath("CHEBI:27732", "has part")

	
getCompleteEntity(chebiId)

	Retrieves the complete entity including synonyms, database links and
chemical structures, using the ChEBI identifier.

	param str chebiId

	a valid ChEBI identifier (string)

	return

	an object containing fields such as mass, names, smiles

>>> from bioservices import *
>>> ch = ChEBI()
>>> res = ch.getCompleteEntity("CHEBI:27732")
>>> res.mass
194.19076

The returned structure is the raw object returned by the API.
You can extract names from other sources for instance:

>>> [x[0] for x in res.DatabaseLinks if x[1].startswith("KEGG")]
[C07481, D00528]
>>> [x[0] for x in res.DatabaseLinks if x[1].startswith("ChEMBL")]
[116485]

See also

conv(), getCompleteEntity()

	
getCompleteEntityByList(chebiIdList=[])

	Given a list of ChEBI accession numbers, retrieve the complete Entities.

The maximum size of this list is 50.

See also

getCompleteEntity()

	
getLiteEntity(search, searchCategory='ALL', maximumResults=200, stars='ALL')

	Retrieves list of entities containing the ChEBI ASCII name or identifier

	Parameters

	
	search – search string or category.

	searchCategory – filter with category. Can be ALL,

	maximumResults (int [https://docs.python.org/3/library/functions.html#int]) – (default is 200)

	stars (str [https://docs.python.org/3/library/stdtypes.html#str]) – filters that can be set to “TWO ONLY”, “ALL”, “THREE ONLY”

The input parameters are a search string and a search category. If the search
category is null then it will search under all fields. The search string accepts
the wildcard character “*” and also unicode characters. You can get maximum
results upto 5000 entries at a time.

>>> ch.getLiteEntity("CHEBI:27732")
[(LiteEntity){
 chebiId = "CHEBI:27732"
 chebiAsciiName = "caffeine"
 searchScore = 4.77
 entityStar = 3
 }]
>>> res = ch.getLiteEntity("caffeine")
>>> res = ch.getLiteEntity("caffeine", maximumResults=10)
>>> len(res)
10

See also

getCompleteEntity()

	
getOntologyChildren(chebiId)

	Retrieves the ontology children of an entity including the relationship type

	Parameters

	chebiId (str [https://docs.python.org/3/library/stdtypes.html#str]) – a valid ChEBI identifier (string)

	
getOntologyParents(chebiId)

	Retrieves the ontology parents of an entity including the relationship type

	Parameters

	chebiId (str [https://docs.python.org/3/library/stdtypes.html#str]) – a valid ChEBI identifier (string)

	
getStructureSearch(structure, mode='MOLFILE', structureSearchCategory='SIMILARITY', totalResults=50, tanimotoCutoff=0.25)

	Does a substructure, similarity or identity search using a structure.

	Parameters

	
	structure (str [https://docs.python.org/3/library/stdtypes.html#str]) – the input structure

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – type of input (MOLFILE, SMILES, CML” (note that
the API uses type but this is a python keyword)

	structureSearchCategory (str [https://docs.python.org/3/library/stdtypes.html#str]) – category of the search. Can be
“SIMILARITY”, “SUBSTRUCTURE”, “IDENTITY”

	totalResults (int [https://docs.python.org/3/library/functions.html#int]) – limit the number of results to 50 (default)

	tanimotoCuoff – limit results to scores higher than this
parameter

>>> ch = ChEBI()
>>> smiles = ch.getCompleteEntity("CHEBI:27732").smiles
>>> ch.getStructureSearch(smiles, "SMILES", "SIMILARITY", 3, 0.25)

	
getUpdatedPolymer(chebiId)

	Returns the UpdatedPolymer object

	Parameters

	
	chebiId (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	chebiId – a valid ChEBI identifier (string)

	Returns

	an object with information as described below.

The object contains the updated 2D MolFile structure, GlobalFormula
string containing the formulae for each repeating-unit, the GlobalCharge
string containing the charge on individual repeating-units and the
primary ChEBI ID of the polymer, even if the secondary Identifier was passed
to the web-service.

8.9. ChEMBL

This module provides a class ChEMBL

What is ChEMBL

	URL

	https://www.ebi.ac.uk/chembl

	REST

	https://www.ebi.ac.uk/chembl/api/data

“Using the ChEMBL web service API users can retrieve data from the ChEMBL
database in a programmatic fashion. The following list defines the currently
supported functionality and defines the expected inputs and outputs of each
method.”

—From ChEMBL web page Dec 2012

	
class ChEMBL(verbose=False, cache=False)

	New ChEMBL API bioservices 1.6.0

Resources

ChEMBL database is made of a set of resources. We recommend to look at
https://arxiv.org/pdf/1607.00378.pdf

Here we first create an instance and retrieve the first 1000 molecules from
the database using the limit parameter.

>>> from bioservices import ChEMBL
>>> c = ChEMBL()
>>> res = c.get_molecule(limit=1000)

The returned objet is a list of 1000 records, each of them being a
dictionary. The molecule resource is actually a very large one
and one may want to skip some entries. This is possible using the offset
parameter as follows:

Retrieve 1000 molecules skipping the first 50
res = c.get_molecule(limit=1000, offset=50)

If you want to know all resources available and the number of entries in
each resources, use:

status = c.get_status_resources()

For instance, you should be able to get the total number of entries in the
mechanism resource is about 5,000:

print(status['mechanism'])

To retrieve all entries from the mechanism resource, you can either set
limit to a value large enough:

res = c.get_mechanism(limit=1000000)

or simply set it to -1:

res = c.get_mechanism(limit=-1)

All resources methods behaves in the same way.

Those resources methods are: get_activity(), get_assay(),
get_atc_class(), get_binding_site(), get_biotherapeutic(),
get_cell_line(), get_chembl_id_lookup(),
get_compound_record(), get_compound_structural_alert(),
get_document(), get_document_similarity(),
get_document_term(), get_drug(), get_drug_indication(),
get_go_slim(), get_mechanism(), get_metabolism(),
get_molecule(), get_molecule_form(), get_protein_class(),
get_source(), get_target(), get_target_component(),
get_target_prediction(), get_target_relation(),
get_tissue().

3 ways of getting items

	Retrieve everything:

c.get_molecule(limit=-1)

	Retrieve a specific entry:

c.get_molecule("CHEMBL24")

	Retrieve a set of entries:

c.get_molecule(["CHEMBL24","CHEMBL2"])

Filtering and Ordering

For ordering the results, we provide a simple method order_by() that
allows to sort the dictionary according to values in a specific key.

Any data returned by a resource method (a list of dictionary) can be process
through this method:

c = ChEMBL()
data = c.get_drug(limit=100)
ordered_data = c.order_by(data, 'chirality')

If you want to order using a key within a key, for instance order by
molecular weight stored in the molecular_properties key, use the double
underscore method as follows:

c = ChEMBL()
data = c.get_drug(limit=100)
ordered_data = c.order_by(data, 'molecular_properties__mw_freebase')

For filtering, it is possible to apply search filters to any resources.
For example, it is possible to return all ChEMBL targets that contain
the term ‘kinase’ in the pref_name attribute:

c.get_target(filters='pref_name__contains=kinase")

The pattern for applying a filter is as follows:

[field]__[filter_type]=[value]

where field has to be found by the user. Simply introspect the content of an
item returned by the resource. For instance:

c.get_target(limit=1) # to get one entry

Let us consider the case of the molecule resource. You can
retrieve the first 10 molecules using e.g.:

res = c.get_molecule(limit=10)

If you look at the first entry using res[0], you will get about
38 keys. For instance molecule_properties or
molecule_chembl_id.

You can filter the molecules to keep only the molecule_chembl_id
that match either CHEMBL25 or CHEMBL1000 using:

res = c.get_molecule(filters='molecule_chembl_id__in=CHEMBL25,CHEMBL1000')

For molecule_properties, this is actually a dictionary. For instance,
inside the molecule_properties field, you have the molecular weight
(mw_freebase). So to apply this filter, you need to use the following code
(to keep molecules with molecular weight greater than 300:

res = c.get_molecule(filters='molecule_properties__mw_freebase__gte=300')

Here are the different types of filtering:

	Filter Type

	Description

	exact (iexact)

	Exact match with query

	contains

	wild card search with query

	startswith

	starts with query

	endswith

	ends with query

	regex

	regulqr expression query

	gt (gte)

	Greater than (or equal)

	lt (lte)

	Less than (or equal)

	range

	Within a range of values

	in

	Appears within list of query values

	isnull

	Field is null

	search

	Special type of filter allowing a full text
search based on Solr queries.

Several filters can be applied at the same time using a list:

filters = ['molecule_properties__mw_freebase__gte=300']
filters += ['molecule_properties__alogp__gte=3']
res = c.get_molecule(filters)

Use Cases: (inspired from ChEMBL documentation)

Search molecules by synonym:

>>> from bioservices import ChEMBL
>>> c = ChEMBL()
>>> res = c.search_molecule('aspirin')

or SMILE, or InChiKey, or CHEMBLID:

>>> res = c.get_molecule("CC(=O)Oc1ccccc1C(=O)O")
>>> res = c.get_molecule("BSYNRYMUTXBXSQ-UHFFFAOYSA-N")
>>> res = c.get_molecule('CHEMBL25')

Several molecules at the same time can also be retrieved using lists:

>>> res = c.get_molecule(['CHEMBL25', 'CHEMBL2'])

Search target by gene name:

>>> res = c.search_target("GABRB2")
>>> len(res['targets'])
18

or directly in the target synonym field:

>>> res = c.get_target(filters='target_synonym__icontains=GABRB2')

Note

Not sure what is the difference between icontains vs contains.
It looks like icontains is more permissive (you get more entries
with icontains).

Having a list of molecules ChEMBL IDs in a list, get uniprot accession
numbers that map to those compounds:

First, get some IDs of approved drugs (about 2000 molecules)
c = ChEMBL()
drugs = c.get_approved_drugs()
IDs = [x['molecule_chembl_id'] for x in drugs]

we jump from compounds to targets through activities
Here this is a one to many mapping so we initialise a default
dictionary.
compound2target = defaultdict(set)

filter = "molecule_chembl_id__in={}"
for i in range(0, len(IDs), 50):
 activities = c.get_activity(filter.format(IDs[i:i+50]))
 # get target ChEMBL IDs from activities
 for act in activities:
 compound2target[act['molecule_chembl_id']].add(act['target_chembl_id'])

What we need is to get targets for all targets found in the previous
step. For each compound/drug there are hundreds of targets though. And
we will call the get_target for each list of hundreds targets. This
will take forever. Instead, because there are *only* 12,000 targets,
let us download all of them ! This took about 4 minutes on this test but
if you use the cache, next time it will be much much quicker. This is
not down at the activities level because there are too many entries

targets = c.get_target(limit=-1)

identifies all target chembl id to easily retrieve the entry later on
target_names = [target['target_chembl_id'] for target in targets]

retrieve all uniprot accessions for all targets of each compound
for compound, targs in compounds2targets.items():
 accessions = set()
 for target in targs:
 index = target_names.index(target)
 accessions = accessions.union([comp['accession']
 for comp in targets[index]['target_components']])
 compounds2targets[compound] = accessions

In version 1.6.0 of bioservices, you can simply use:

res = c.compounds2targets(IDs)

Get Target type count for all targets:

import collections
collections.Counter([x['target_type'] for x in targets]

Find compounds similar to given SMILES query with similarity threshold of
85%:

>>> SMILE = "CN(CCCN)c1cccc2ccccc12"
>>> c.get_similarity(SMILE, similarity=70)

Find compounds similar to aspirin (CHEMBL25) with similarity
threshold of 70%:

search for aspirin in all molecules and from first hist
get the ChEMBL ID
>>> molecules = c.search_molecule("aspirin")['molecules']
>>> chembl_id = molecules[0]['molecule_chembl_id']
now use the :meth:`get_similarity` given the ID
>>> res = c.get_similarity(chembl_id, similarity=70)

Perform substructure search using SMILES or ChEMBID:

>>> res = c.get_substructure("CN(CCCN)c1cccc2ccccc12")
>>> res = c.get_substructure("CHEMBL25")

Obtain he pChEMBL value for compound:

res = c.get_activity(filters=['pchembl_value__isnull=False',
 'molecule_chembl_id=CHEMBL25'])

Obtain he pChEMBL value for compound and target:

res = c.get_activity(filters=['pchembl_value__isnull=False',
 'molecule_chembl_id=CHEMBL25',
 'target_chembl_id=CHEMBL612545'])

Get all approved drugs:

c.get_approved_drugs(max_phase=4)

Get approved drugs for lung cancer

The ChEMBL API significantly changed in 2018 and the new version of
bioservices (1.6.0) had to change the API as well, which has been
simplified.

Here below are some correspondances between the previous and the new API.

	bioservices before 1.6.0

	After 1.6.0

	get_compounds_substructure

	get_substructure

	get_compounds_similar_to_SMILES

	get_similarity(SMILE)

	get_compounds_by_chemblId(ID)

	get_similarity(ID)

	get_individual_compounds_by_inChiKey

	get_molecule(inchikey)

	get_compounds_by_chemblId_form

	get_molecule_form

	get_compounds_by_chemblId_drug_mechanism

	get_mechanism(ID)

	get_target_by_chemblId(ID)

	get_target(ID)

	get_image_of_compounds_by_chemblId

	get_image

	etc

	

	References

	
	https://arxiv.org/pdf/1607.00378.pdf

	https://www.ebi.ac.uk/chembl/api/data/docs

	
compounds2accession(compounds)

	For each compound, identifies the target and corresponding UniProt
accession number

This is not part of ChEMBL API

we recommend to use cache if you use this method regularly
c = Chembl(cache=True)
drugs = c.get_approved_drugs()

to speed up example
drugs = drugs[0:20]
IDs = [x['molecule_chembl_id] for x in drugs]

c.compounds2accession(IDs)

	
get_ATC(limit=20, offset=0, filters=None)

	WHO ATC Classification for drugs

c.get_atc()
c[‘atc’]

Note

get_molecule returns ‘molecules’ and likewise
all methods return a dictionary whose key is the plural
of the method name. This is quite consistent through the
API except for that one because it is an acronym

	
get_activity(query=None, limit=20, offset=0, filters=None)

	Activity values recorded in an Assay

	
get_approved_drugs(max_phase=4, maxdrugs=1000000)

	Return all approved drugs

	Parameters

	max_phase – 4 by default for approved drugs.

	
get_assay(query=None, limit=20, offset=0, filters=None)

	Assay details as reported in source Document/Dataset

>>> c.get_assay("CHEMBL1217643")

	
get_binding_site(limit=20, offset=0, filters=None)

	Target binding site definition

	
get_biotherapeutic(limit=20, offset=0, filters=None)

	Biotherapeutic molecules, which includes HELM notation and sequence data

	
get_cell_line(limit=20, offset=0, filters=None)

	Cell line information

	
get_chembl_id_lookup(query=None, limit=20, offset=0, filters=None)

	Look up ChEMBL Id entity type

	
get_compound_record(query=None, limit=20, offset=0, filters=None)

	Occurence of a given compound in a spcecific document

	
get_compound_structural_alert(query=None, limit=20, offset=0, filters=None)

	Indicates certain anomaly in compound structure

	
get_document(query=None, limit=20, offset=0, filters=None)

	Document/Dataset from which Assays have been extracted

	
get_document_similarity(query=None, limit=20, offset=0, filters=None)

	Provides documents similar to a given one

	
get_document_term(query=None, limit=20, offset=0, filters=None)

	Provides keywords extracted from a document using the TextRank algorithm

	
get_drug(query=None, limit=20, offset=0, filters=None)

	Approved drugs information, icluding (but not limited to) applicants, patent numbers and research codes

	
get_drug_indication(query=None, limit=20, offset=0, filters=None)

	Joins drugs with diseases providing references to relevant sources

	
get_go_slim(query=None, limit=20, offset=0, filters=None)

	GO slim ontology

	
get_image(query, dimensions=500, format='png', save=True, view=True, engine='indigo')

	Get the image of a given compound in PNG png format.

	Parameters

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – a valid compound ChEMBLId or a list/tuple
of valid compound ChEMBLIds.

	format – png, svg. json not supported

	dimensions (int [https://docs.python.org/3/library/functions.html#int]) – size of image in pixels.
An integer z ([image: 1 \leq z \leq 500])

	save –

	view (bool [https://docs.python.org/3/library/functions.html#bool]) –

	engine – Defaults to rdkit. can be rdkit or indigo

	view – show the image if set to True.

	Returns

	the path (list of paths) used to save the figure (figures) (different from Chembl API)

>>> from pylab import imread, imshow
>>> from bioservices import *
>>> s = ChEMBL(verbose=False)
>>> res = s.get_image(31863)
>>> imshow(imread(res['filenames'][0]))

(Source code)

Todo

ignorecoords option

	
get_mechanism(query=None, limit=20, offset=0, filters=None)

	Mechanism of action information for FDA-approved drugs

	
get_metabolism(query=None, limit=20, offset=0, filters=None)

	Metabolic pathways with references

	
get_molecule(query=None, limit=20, offset=0, filters=None)

	Returns some molecules

	Parameters

	
	limit – number of molecules to retrieve

	offset – molecules to ignore before retrieving molecules.

	Returns

	a dictionary with keys page_meta and molecules.

There are 1,800,000 molecules (Jan 2019). You can only retrieve
1,000 molecule at most using the limit parameter. With a loop
you can retrieve molecules in some range.

c.get_molecule('QFFGVLORLPOAEC-SNVBAGLBSA-N')
c.get_molecule("CC(=O)Oc1ccccc1C(=O)O")

	
get_molecule_form(query=None, limit=20, offset=0, filters=None)

	Relationships between molecule parents and salts

>>> s.get_molecule_form("CHEMBL2")['molecule_forms']
[{'is_parent': 'True',
 'molecule_chembl_id': 'CHEMBL2',
 'parent_chembl_id': 'CHEMBL2'},
 {'is_parent': 'False',
 'molecule_chembl_id': 'CHEMBL1558',
 'parent_chembl_id': 'CHEMBL2'},
 {'is_parent': 'False',
 'molecule_chembl_id': 'CHEMBL1347191',
 'parent_chembl_id': 'CHEMBL2'}]

	
get_organism(query=None, limit=20, offset=0, filters=None)

	

	
get_protein_class(query=None, limit=20, offset=0, filters=None)

	Protein family classification of TargetComponents

	
get_similarity(structure, similarity=80, limit=20, offset=0, filters=None)

	Molecule similarity search

	Parameters

	
	structure – provide a valid / existing substructure in
SMILE format to look for in all molecules:

	similarity – must be an integer greater than 70 and
less than 100

	Returns

	list of molecules corresponding to the search

>>> from bioservices import ChEMBL
>>> c = ChEMBL()
>>> res = c.get_similarity("CC(=O)Oc1ccccc1C(=O)O", 80)
>>> res['molecules']

Here are more examples:

Similarity (80% cut off) search for against ChEMBL using
aspirin SMILES string
c.get_similarity("CC(=O)Oc1ccccc1C(=O)O") # 80 by default

Similarity (80% cut off) search for against ChEMBL using
aspirin CHEMBL_ID
c.get_similarity("CHEMBL25")

Similarity (80% cut off) search for against ChEMBL
using aspirin InChI Key
c.get_similarity("BSYNRYMUTXBXSQ-UHFFFAOYSA-N")

The ‘Substructure’ and ‘Similarity’ web service resources allow for the
chemical content of ChEMBL to be searched. Similar to the other resources, these
search based resources except filtering, paging and ordering arguments. These
methods accept SMILES, InChI Key and molecule ChEMBL_ID as arguments and in the
case of similarity searches an additional identity cut-off is needed. Some
example molecule searches are provided in the table below.

Searching with InChI key is only possible for InChI keys found in the
ChEMBL database. The system does not try and convert InChI key to a chemical
representation.

	
get_source(query=None, limit=20, offset=0, filters=None)

	Document/Dataset source

	
get_status()

	Return version of the DB and number of entries

Returns the number of entries for activities, compound_records,
distinct_compounds (molecule), publications (document), targets,
etc…

See also

get_status_resources()

	
get_status_resources()

	Return number of entries for all resources

Note

not in the ChEMBL API.

Changed in version 1.7.3: (removed target_prediction and document_term)

	
get_substructure(structure, limit=20, offset=0, filters=None)

	Molecule substructure search

	Parameters

	structure – provide a valid / existing substructure in
SMILE format to look for in all molecules:

	Returns

	list of molecules corresponding to the search

>>> from bioservices import ChEMBL
>>> c = ChEMBL()
>>> res = c.get_substructure("CC(=O)Oc1ccccc1C(=O)O")

Other examples:

Substructure search for against ChEMBL using aspirin
SMILES string
c.get_substructure("CC(=O)Oc1ccccc1C(=O)O")

Substructure search for against ChEMBL using aspirin
CHEMBL_ID
c.get_substructure("CHEMBL25")

Substructure search for against ChEMBL using aspirin
InChIKey
c.get_substructure("BSYNRYMUTXBXSQ-UHFFFAOYSA-N")

The ‘Substructure’ and ‘Similarity’ web service resources allow
for the chemical content of ChEMBL to be searched. Similar to the
other resources, these search based resources except filtering, paging
and ordering arguments. These methods accept SMILES, InChI Key and
molecule ChEMBL_ID as arguments and in the case of similarity searches
an additional identity cut-off is needed. Some example molecule searches
are provided in the table below.

Searching with InChI key is only possible for InChI keys found in the
ChEMBL database. The system does not try and convert InChI key to a
chemical representation.

	
get_target(query=None, limit=20, offset=0, filters=None)

	Targets (protein and non-protein) defined in Assay

>>> from bioservices import *
>>> s = ChEMBL(verbose=False)
>>> resjson = s.get_targetd('CHEMBL240')

	
get_target_component(query=None, limit=20, offset=0, filters=None)

	Target sequence information (A Target may have 1 or more sequences)

res = c.get_target_component(1)
res['sequence']

	
get_target_prediction(query=None, limit=20, offset=0, filters=None)

	Predictied binding of a molecule to a given biological target

>>> res = c.get_target_prediction(1)
>>> res['molecule_chembl_id']
'CHEMBL2'

	
get_target_relation(query=None, limit=20, offset=0, filters=None)

	Describes relations between targets

>>> c.get_target_relation('CHEMBL261')
{'related_target_chembl_id': 'CHEMBL2095180',
 'relationship': 'SUBSET OF',
 'target_chembl_id': 'CHEMBL261'}

	
get_tissue(query=None, limit=20, offset=0, filters=None)

	Tissue classification

c.get_tissue(filters=[‘pref_name__contains=cervix’])

	
get_xref_source(query=None, limit=20, offset=0, filters=None)

	

	
order_by(data, name, ascending=True)

	Ordering data

we use same API as ChEMBL API using the double underscore
to indicate a hierarchy in the dictionary. So to access to
d[‘a’][‘b’], we use a__b as the input name parameter.
We only allows 3 levels e.g., a__b__c

data = c.get_molecules()
data1 = c.order_by(data, 'molecule_chembl_id')
data2 = c.order_by(data, 'molecule_properties__alogp')

Note

the ChEMBL API allows for ordering but we do not use
that API. Instead, we provide this generic function.

	
search_activity(query, limit=20, offset=0)

	Activity values recorded in an Assay

	
search_assay(query, limit=20, offset=0)

	Assay details as reported in source document

	
search_chembl_id_lookup(query, limit=20, offset=0)

	Look up ChEMBL Id entity type

	
search_document(query, limit=20, offset=0)

	Document/Dataset from which Assays have been extracted

	
search_molecule(query, limit=20, offset=0)

	

	
search_protein_class(query, limit=20, offset=0)

	

	
search_target(query, limit=20, offset=0)

	Targets (protein and non-protein) defined in Assay

8.10. COG

Interface to some part of the UniProt web service

What is COG service?

	URL

	https://www.ncbi.nlm.nih.gov/research/cog/webservices/

	Citation

	

Database of Clusters of Orthologous Genes (COGs)

—From COG web site, Jan 2021

	
class COG(verbose=False, cache=False)

	Interface to the COG service

from bioservices import COG
c = COG()
cogs = c.get_all_cogs() # This is a pandas dataframe

Constructor

	
get_all_cogs_definition()

	Get all COG Definitions:

	
get_cog_definition_by_cog_id(cog_id)

	Get specific COG Definitions by COG: COG0003

	
get_cog_definition_by_name(cog)

	Get specific COG Definitions by name: Thiamin-binding stress-response protein YqgV, UPF0045 family

	
get_cogs(page=1)

	Get COGs. Unfortunately, the API sends 10 COGS at a tine given a
specific page.

The dictionary returned contains the results, count, previous and next
page.

	
get_cogs_by_assembly_id(assembly_id)

	Filter COGs by assembly ID: GCA_000007185.1

	
get_cogs_by_category(category)

	Filter COGs by Taxonomic Category: ACTINOBACTERIA

	
get_cogs_by_category_(protein)

	Filter COGs by Protein name: AJP49128.1

	
get_cogs_by_category_id(category)

	Filter COGs by Taxonomic Category taxid: 651137

	
get_cogs_by_gene(gene)

	Filter COGs by gene tag: MK0280

	
get_cogs_by_id(cog_id)

	Filter COGs by COG ID tag: COG0003

	
get_cogs_by_id_and_category(cog_id, category)

	Filter COGs by COG id and Taxonomy Categories: COG0004 and CYANOBACTERIA

	
get_cogs_by_id_and_organism(cog_id, organism)

	Filter COGs by COG id and organism: COG0004 and Escherichia_coli_K-12_sub_MG1655

	
get_cogs_by_orgnanism(name)

	Filter COGs by organism name: Nitrosopumilus_maritimus_SCM1

	
get_cogs_by_taxon_id(taxon_id)

	Filter COGs by taxid: 1229908

	
get_taxonomic_categories()

	Get all Taxonomic Categories:

	
get_taxonomic_category_by_name(name)

	Get specific Taxonomic Category by name: ALPHAPROTEOBACTERIA

8.11. ENA

This module provides a class ENA

What is ENA

	URL

	https://www.ebi.ac.uk/ena

The European Nucleotide Archive (ENA) provides a comprehensive
record of the world’s nucleotide sequencing information, covering
raw sequencing data, sequence assembly information and functional
annotation.

—From ENA web page Jan 2016

New in version 1.4.4.

	
class ENA(verbose=False, cache=False)

	Interface to ChEMBL [http://www.ebi.ac.uk/ena/index.php]

Here is a quick example to retrieve a target given its ChEMBL Id

>>> from bioservices import ENA
>>> s = ENA(verbose=False)

Retrieve read domain metadata in XML format:

print(e.get_data('ERA000092', 'xml'))

Retrieve assemble and annotated sequences in fasta format:

print(e.get_data('A00145', 'fasta'))

The range parameter can be used in combination to retrieve a subsequence
from sequence entry A00145 from bases 3 to 63 using

e.get_data('A00145', 'fasta', fasta_range=[3,63])

Retrieve assembled and annotated subsequences in HTML format (same
as above but in HTML page).

e.view_data(‘A00145’)

Retrieve expanded CON records:

To retrieve expanded CON records use the expanded=true parameter. For
example, the expanded CON entry AL513382 in flat file format can be i
obtained as follows:

e.get_data('AL513382', frmt='text', expanded=True)

Expanded CON records are different from CON records in two ways.
Firstly, the expanded CON records contain the full sequence in addition
to the contig assembly instructions. Secondly, if a CON record contains
only source or gap features the expanded CON records will also display
all features from the segment records.

Retrieve assembled and annotated sequence header in flat file format

To retrieve assembled and annotated sequence header in flat file
format please use the header=true parameter, e.g.:

e.get_data(‘BN000065’, ‘text’, header=True)

Retrieve assembled and annotated sequence records using sequence
versions:

e.get_data('AM407889.1', 'fasta')
e.get_data('AM407889.2', 'fasta')

Constructor

	Parameters

	verbose – set to False to prevent informative messages

	
data_warehouse()

	

	
get_data(identifier, frmt, fasta_range=None, expanded=None, header=None, download=None)

	
	:param frmtxml, text, fasta, fastq, html, embl but does depend on the
	entry

Example:

get_data(“/AL513382”, “embl”)

ENA API changed in 2020 but we tried to keep the same services in this
method.

	
get_taxon(taxon)

	

	
url = 'http://www.ebi.ac.uk/ena/browser/api'

	

8.12. EUtils

Interface to the EUtils web Service.

What is EUtils ?

	URL

	http://www.ncbi.nlm.nih.gov/books/NBK25499/

	URL

	http://www.ncbi.nlm.nih.gov/books/NBK25500/#chapter1.Demonstration_Programs

The Entrez Programming Utilities (E-utilities) are a set of eight server-side programs that provide a stable interface into the Entrez query and database system at the National Center for Biotechnology Information (NCBI). The E-utilities use a fixed URL syntax that translates a standard set of input parameters into the values necessary for various NCBI software components to search for and retrieve the requested data. The E-utilities are therefore the structured interface to the Entrez system, which currently includes 38 databases covering a variety of biomedical data, including nucleotide and protein sequences, gene records, three-dimensional molecular structures, and the biomedical literature.

—from http://www.ncbi.nlm.nih.gov/books/NBK25497/, March 2013

	
class EUtils(verbose=False, email='unknown', cache=False, xmlparser='EUtilsParser')

	Interface to NCBI Entrez Utilities [http://www.ncbi.nlm.nih.gov/entrez] service

Note

Technical note: the WSDL interface was dropped in july 2015
so we now use the REST service.

Warning

Read the guidelines [http://www.ncbi.nlm.nih.gov/books/NBK25497/] before sending requests.
No more than 3 requests per seconds otherwise your IP may be banned.
You should provide your email by filling the email so that
before being banned, you may be contacted.

There are a few methods such as ELink(), EFetch().
Here is an example on how to use EFetch() method to retrieve the
FASTA sequence of a given identifier (34577063):

>>> from bioservices import EUtils
>>> s = EUtils()
>>> print(s.EFetch("protein", "34577063", rettype="fasta"))
>gi|34577063|ref|NP_001117.2| adenylosuccinate synthetase isozyme 2 [Homo sapiens]
MAFAETYPAASSLPNGDCGRPRARPGGNRVTVVLGAQWGDEGKGKVVDLLAQDADIVCRCQGGNNAGHTV
VVDSVEYDFHLLPSGIINPNVTAFIGNGVVIHLPGLFEEAEKNVQKGKGLEGWEKRLIISDRAHIVFDFH
QAADGIQEQQRQEQAGKNLGTTKKGIGPVYSSKAARSGLRMCDLVSDFDGFSERFKVLANQYKSIYPTLE
IDIEGELQKLKGYMEKIKPMVRDGVYFLYEALHGPPKKILVEGANAALLDIDFGTYPFVTSSNCTVGGVC
TGLGMPPQNVGEVYGVVKAYTTRVGIGAFPTEQDNEIGELLQTRGREFGVTTGRKRRCGWLDLVLLKYAH
MINGFTALALTKLDILDMFTEIKVGVAYKLDGEIIPHIPANQEVLNKVEVQYKTLPGWNTDISNARAFKE
LPVNAQNYVRFIEDELQIPVKWIGVGKSRESMIQLF

Most of the methods take a database name as input. You can obtain the
valid list by checking the databases attribute.

A few functions takes Identifier(s) as input. It could be a list of
strings, list of numbers, or a string where identifiers are separated
either by comma or spaces.

A few functions take an argument called term. You can use the AND
keyword with spaces or + signs as separators:

Correct: term=biomol mrna[properties] AND mouse[organism]
Correct: term=biomol+mrna[properties]+AND+mouse[organism]

Other special characters, such as quotation marks (”) or the # symbol used
in referring to a query key on the History server, could be represented by
their URL encodings (%22 for “; %23 for #) or verbatim .:

Correct: term=#2+AND+"gene in genomic"[properties]
Correct: term=%232+AND+%22gene+in+genomic%22[properties]

For information about retmode and retype, please see:

http://www.ncbi.nlm.nih.gov/books/NBK25499/table/chapter4.T._valid_values_of__retmode_and/?report=objectonly

	
ECitMatch(bdata, **kargs)

	
	Parameters

	bdata – Citation strings. Each input citation must
be represented by a citation string in the following format:

journal_title|year|volume|first_page|author_name|your_key|

Multiple citation strings may be provided by separating the
strings with a carriage return character (%0D) or simply \r or \n.

The your_key value is an arbitrary label provided by the user
that may serve as a local identifier for the citation,
and it will be included in the output.

all spaces must be replaced by + symbols and that citation
strings should end with a final vertical bar |.

Only xml supported at the time of this implementation.

from bioservices import EUtils
s = EUtils()
print(s.ECitMatch("proc+natl+acad+sci+u+s+a|1991|88|3248|mann+bj|Art1|%0Dscience|1987|235|182|palmenberg+ac|Art2|"))

	
EFetch(db, id, retmode='text', **kargs)

	Access to the EFetch E-Utilities

	Parameters

	
	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – database from which to retrieve UIDs.

	id (str [https://docs.python.org/3/library/stdtypes.html#str]) – list of identifiers.

	retmode – default to text (could be xml but not recommended).

	rettype – could be fasta, summary, docsum

	Returns

	depends on retmode parameter.

Note

addition to NCBI: settings rettype to “dict” returns a dictionary

>>> ret = s.EFetch("omim", "269840") --> ZAP70
>>> ret = s.EFetch("taxonomy", "9606", retmode="xml")
>>> [x.text for x in ret.getchildren()[0].getchildren() if x.tag=="ScientificName"]
['Homo sapiens']

>>> s = eutils.EUtils()
>>> s.EFetch("protein", "34577063", retmode="text", rettype="fasta")
>gi|34577063|ref|NP_001117.2| adenylosuccinate synthetase isozyme 2 [Homo sapiens]
MAFAETYPAASSLPNGDCGRPRARPGGNRVTVVLGAQWGDEGKGKVVDLLAQDADIVCRCQGGNNAGHTV
VVDSVEYDFHLLPSGIINPNVTAFIGNGVVIHLPGLFEEAEKNVQKGKGLEGWEKRLIISDRAHIVFDFH
QAADGIQEQQRQEQAGKNLGTTKKGIGPVYSSKAARSGLRMCDLVSDFDGFSERFKVLANQYKSIYPTLE
IDIEGELQKLKGYMEKIKPMVRDGVYFLYEALHGPPKKILVEGANAALLDIDFGTYPFVTSSNCTVGGVC
TGLGMPPQNVGEVYGVVKAYTTRVGIGAFPTEQDNEIGELLQTRGREFGVTTGRKRRCGWLDLVLLKYAH
MINGFTALALTKLDILDMFTEIKVGVAYKLDGEIIPHIPANQEVLNKVEVQYKTLPGWNTDISNARAFKE
LPVNAQNYVRFIEDELQIPVKWIGVGKSRESMIQLF

Identifiers could be provided as a single string with comma-separated
values, or a list of strings, a list of integers, or just one
string or one integer but no mixing of types in the list:

>>> e.EFetch("protein", "352, 234", retmode="text", rettype="fasta")
>>> e.EFetch("protein", 352, retmode="text", rettype="fasta")
>>> e.EFetch("protein", [352], retmode="text", rettype="fasta")
>>> e.EFetch("protein", [352, 234], retmode="text", rettype="fasta")

retmode should be xml or text depending on the database.
For instance, xml for pubmed:

>>> e.EFetch("pubmed", "20210808", retmode="xml")
>>> e.EFetch('nucleotide', id=15, retmode='xml')
>>> e.EFetch('nucleotide', id=15, retmode='text', rettype='fasta')
>>> e.EFetch('nucleotide', 'NT_019265', rettype='gb')

Other special characters, such as quotation marks (”) or the # symbol
used in referring to a query key on the History server, should be
represented by their URL encodings (%22 for “; %23 for #).

A useful command is the following one that allows to get back a GI
identifier from its accession, which is common to NCBI/EMBL:

e.EFetch(db="nuccore",id="AP013055", rettype="seqid", retmode="text")

Changed in version 1.5.0: instead of “xml”, retmode can now be set to dict, in which case an
XML is retrieved and converted to a dictionary if possible.

	
EGQuery(term, **kargs)

	Provides the number of records retrieved in all Entrez databases by a text query.

	Parameters

	term (str [https://docs.python.org/3/library/stdtypes.html#str]) – Entrez text query.
Spaces may be replaced by ‘+’ signs. For very long queries
(more than several hundred characters long), consider using
an HTTP POST call. See the
PubMed or Entrez help for information about search field
descriptions and tags.
Search fields and tags are database specific.

	Returns

	returns a json data structure

>>> ret = s.EGQuery("asthma")
>>> [(x.DbName, x.Count) for x in ret.eGQueryResult.ResultItem if x.Count!='0']

>>> ret = s.EGQuery("asthma")
>>> ret.eGQueryResult.ResultItem[0]
{'Count': '115241',
 'DbName': 'pmc',
 'MenuName': 'PubMed Central',
 'Status': 'Ok'}

	
EInfo(db=None, **kargs)

	Provides information about a database (e.g., number of records)

	Parameters

	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – target database about which to gather statistics.
Value must be a valid Entrez database name. See databases
or don’t provide any value to obtain the entire list

	Returns

	a json data structure that depends on the
value of databases (default to json)

>>> all_database_names = s.EInfo()
>>> # specific info about one database:
>>> ret = s.EInfo("taxonomy")
>>> ret[0]['count']
u'1445358'
>>> ret = s.EInfo('pubmed')
>>> ret[0]['fieldlist'][2]['fullname']
'Filter'

You can use the retmode parameter to ‘xml’ as well. In that
case, you will need a XML parser.

>>> ret = s.EInfo("taxonomy")

Note

Note that the name in the XML or json outputs
differ (some have lower cases, some have upper cases). This
is inherent to the output of EUtils.

	
ELink(db=None, dbfrom=None, id=None, **kargs)

	The Entrez links utility

Responds to a list of UIDs in a given database with either a list of
related UIDs (and relevancy scores) in the same database or a list
of linked UIDs in another Entrez database;

	Parameters

	
	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – valid database from which to retrieve UIDs.

	dbfrom (str [https://docs.python.org/3/library/stdtypes.html#str]) – Database containing the input UIDs. The
value must be a valid database name (default = pubmed).
This is the origin database of
the link operation. If db and dbfrom are set to the same database
value, then ELink will return computational neighbors within
that database. Computational neighbors have linknames that begin
with dbname_dbname (examples: protein_protein,
pcassay_pcassay_activityneighbor).

	id (str [https://docs.python.org/3/library/stdtypes.html#str]) – UID list. Either a single UID or a comma-delimited list
Limited to 200 Ids

	cmd (str [https://docs.python.org/3/library/stdtypes.html#str]) – ELink command mode. The command mode specified which
function ELink will perform. Some optional parameters only
function for certain values of cmd (see
http://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.ELink).
Examples are neighbor, prlinks.

>>> # Example: Find related articles to PMID 20210808
>>> ret = s.ELink("pubmed", id="20210808", cmd="neighbor_score")

>>> ret = s.parse_xml(ret, 'EUtilsParser')
>>> ret.eLinkResult.LinkSet.LinkSetDb[0].Link[1]
{'Id': '16539535'}

>>> s.ELink(dbfrom="nucleotide", db="protein",
 id="48819,7140345")
>>> s.ELink(dbfrom="nucleotide", db="protein",
 id="48819,7140345")
>>> s.ELink(dbfrom='nuccore', id='21614549,219152114',
 cmd='ncheck')

Convert GI number to Taxon identifiers:

>>> s.ELink(dbfrom='nuccore', db="taxonomy", id='21614549,219152114')

	
EPost(db, id, **kargs)

	Accepts a list of UIDs from a given database,

stores the set on the History Server, and responds with a query
key and web environment for the uploaded dataset.

	Parameters

	
	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – a valid database

	id – list of strings of strings

	Returns

	a dictionary with a Web Environment string
and a QueryKey to be re-used in another EUtils.

	
ESearch(db, term, **kargs)

	Responds to a query in a given database

The response can be used later in ESummary, EFetch or ELink,
along with the term translations of the query.

	Parameters

	
	db – a valid database

	term – an Entrez text query

Note

see _get_esearch_params() for the list of valid parameters.

>>> ret = e.ESearch('protein', 'human', RetMax=5)
>>> ret = e.ESearch('taxonomy', 'Staphylococcus aureus[all names]')
>>> ret = e.ESearch('pubmed', "cokelaer AND BioServices")

>>> ret = e.ESearch('protein', '15718680')
>>> # Let us show the first pubmed identifier in a browser
>>> identifiers = e.pubmed(ret['idlist'][0])

More complex requests can be used. We will not cover all the
possiblities (see the NCBI website). Here is an example to tune
the search term to look into PubMed for the journal PNAS
Volume 16, and retrieve.:

>>> e.ESearch("pubmed", "PNAS[ta] AND 16[vi]")

You can then look more closely at a specific identifier using EFetch:

>>> e = EFetch("pubmed")
>>> e.Efetch(identifiers)

Note

valid parameters can be found by calling
_get_esearch_params()

	
ESpell(db, term, **kargs)

	Retrieve spelling suggestions for a text query in a given database.

	Parameters

	
	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – database to search. Value must be a valid Entrez
database name (default = pubmed).

	term (str [https://docs.python.org/3/library/stdtypes.html#str]) – Entrez text query. All special characters must be
URL encoded.

>>> ret = e.ESpell(db="pubmed", term="aasthma+OR+alergy")
>>> ret = ret['eSpellResult']
>>> ret['Query'] 'asthmaa OR alergies'
>>> ret['CorrectedQuery']
'asthma or allergy'
>>> ret = e.ESpell(db="pubmed", term="biosservices")
>>> ret = ret['eSpellResult']
>>> ret['CorrectedQuery']
bioservices

	
ESummary(db, id=None, **kargs)

	Returns document summaries for a list of input UIDs

	Parameters

	
	db – a valid database

	id (str [https://docs.python.org/3/library/stdtypes.html#str]) – list of identifiers (or string comma separated).
all of the UIDs must be from the database specified by db. Limited
to 200 identifiers

>>> from bioservices import *
>>> s = EUtils()
>>> ret = s.ESummary("snp","7535")
>>> ret = s.ESummary("snp","7535,7530")
>>> ret = s.ESummary("taxonomy", "9606,9913")

>>> proteins = e.ESearch("protein", "bacteriorhodopsin",
 retmax=20)
>>> ret = e.ESummary("protein", 449301857)
>>> ret['result']['449301857']['extra']
'gi|449301857|gb|EMC97866.1||gnl|WGS:AEIF|BAUCODRAFT_31870'

	
property databases

	Returns list of valid databases

	
email

	fill this with your email address

	
help()

	Open EUtils help page

	
parse_xml(ret, method=None)

	

	
snp_summary(id)

	Alias to Efetch for the SNP database

	Return

	a json data structure.

>>> ret = s.snp("123")

	
taxonomy_summary(id)

	Alias to EFetch for the taxonomy database

>>> s = EUtils()
>>> ret = s.taxonomy("9606")
>>> ret['9606']['species']
'sapiens'
>>> ret = s.taxonomy("9606,9605,111111111,9604")
>>> ret['9604']['taxid']
9604

	
class EUtilsParser(xml)

	Convert xml returned by EUtils into a structure easier to manipulate

Used by EUtils.EGQuery(), EUtils.ELink().

8.13. GeneProf

Currently removed from the main API from version 1.6.0 onwards. You can still get
the code in earlier version or in the github repository in the attic/ directory

8.14. QuickGO

Interface to the quickGO interface

What is quickGO

	URL

	http://www.ebi.ac.uk/QuickGO/

	Service

	http://www.ebi.ac.uk/QuickGO/WebServices.html

“QuickGO is a fast web-based browser for Gene Ontology terms and
annotations, which is provided by the UniProt-GOA project at the EBI. “

—from QuickGO home page, Dec 2012

	
class QuickGO(verbose=False, cache=False)

	Interface to the QuickGO [http://www.ebi.ac.uk/QuickGO/WebServices.html] service

Retrieve information given a GO identifier:

>>> from bioservices import QuickGO
>>> go = QuickGO()
>>> res = go.get_go_terms("GO:0003824")

Changed in version we: use the new QuickGO API since version 1.5.0
To use the old API, please use version of bioservices below 1.5

Constructor

	Parameters

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – print informative messages.

	
Annotation(assignedBy=None, includeFields=None, limit=100, page=1, aspect=None, reference=None, geneProductId=None, evidenceCode=None, goId=None, qualifier=None, withFrom=None, taxonId=None, taxonUsage=None, goUsage=None, goUsageRelationships=None, evidenceCodeUsage=None, evidenceCodeUsageRelationships=None, geneProductType=None, targetSet=None, geneProductSubset=None, extension=None)

	Calling the Annotation service

Changed in version 1.4.18: due to service API changes, we refactored
this method completely

	Parameters

	
	assignedBy (str [https://docs.python.org/3/library/stdtypes.html#str]) – The database from which this annotation
originates. Accepts comma separated values.E.g., BHF-UCL,Ensembl.

	includeFields (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional fields retrieved from external
services. Accepts comma separated values. accepted values: goName, taxonName,
name, synonyms.

	limit (int [https://docs.python.org/3/library/functions.html#int]) – download limit (number of lines) (default 10,000 rows,
which may not be sufficient for the data set that you are
downloading. To bypass this default, and return the entire data set,
specify a limit of -1).

	page (int [https://docs.python.org/3/library/functions.html#int]) – results may be stored on several pages. You must
provide this number. There is no way to retrieve more than 100
results without calling this function several times chanding this
parameter (default to 1).

	aspect (char) – use this to limit the annotations returned to a
specific ontology or ontologies (Molecular Function, Biological
Process or Cellular Component). The valid character can be F,P,C.

	reference (str [https://docs.python.org/3/library/stdtypes.html#str]) – PubMed or GO reference supporting annotation. Can refer to a
specific reference identifier or category (for category level, use
* after ref type). Can be ‘PUBMED:*’, ‘GO_REF:0000002’.

	geneProductId (str [https://docs.python.org/3/library/stdtypes.html#str]) – The id of the gene product annotated with the
GO term. Accepts comma separated values.E.g., URS00000064B1_559292.

	evidenceCode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Evidence code indicating how the annotation is
supported. Accepts comma separated values. E.g., ECO:0000255.

	goId (str [https://docs.python.org/3/library/stdtypes.html#str]) – The GO id of an annotation. Accepts comma separated
values. E.g., GO:0070125.

	qualifier (str [https://docs.python.org/3/library/stdtypes.html#str]) – Aids the interpretation of an annotation. Accepts
comma separated values. E.g., enables,involved_in.

	withFrom (str [https://docs.python.org/3/library/stdtypes.html#str]) – Additional ids for an annotation. Accepts comma
separated values. E.g., P63328.

	taxonId (str [https://docs.python.org/3/library/stdtypes.html#str]) – The taxonomic id of the species encoding the gene
product associated to an annotation. Accepts comma separated values. E.g.,
1310605.

	taxonUsage (str [https://docs.python.org/3/library/stdtypes.html#str]) – Indicates how the taxonomic ids within the
annotations should be used. E.g., exact.

	goUsage (str [https://docs.python.org/3/library/stdtypes.html#str]) – Indicates how the GO terms within the annotations
should be used. Used in conjunction with ‘goUsageRelationships’ filter. E.g.,
descendants.

	goUsageRelationships (str [https://docs.python.org/3/library/stdtypes.html#str]) – The relationship between the ‘goId’
values found within the annotations. Allows comma separated values. E.g.,
is_a,part_of.

	evidenceCodeUsage (str [https://docs.python.org/3/library/stdtypes.html#str]) – Indicates how the evidence code terms
within the annotations should be used. Is used in conjunction with
‘evidenceCodeUsageRelationships’ filter. E.g., descendants, exact<F12>

	evidenceCodeUsageRelationships (str [https://docs.python.org/3/library/stdtypes.html#str]) – The relationship between the
provided ‘evidenceCode’ identifiers. Allows comma separated values. E.g.,
is_a,part_of.

	geneProductType (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of gene product. Accepts comma separated
values. E.g., protein,RNA. can be protein, RNA and/or complex

	targetSet (str [https://docs.python.org/3/library/stdtypes.html#str]) – Gene product set. Accepts comma separated values.
E.g., KRUK,BHF-UCL,Exosome.

	geneProductSubset (str [https://docs.python.org/3/library/stdtypes.html#str]) – A database that provides a set of gene
products. Accepts comma separated values. E.g., TrEMBL.

	extension (str [https://docs.python.org/3/library/stdtypes.html#str]) – Extensions to annotations, where each extension
can be: EXTENSION(DB:ID) / EXTENSION(DB) / EXTENSION.

	Returns

	a dictionary

>>> print(s.Annotation(protein='P12345', frmt='tsv', col="ref,evidence",
... reference='PMID:*'))
>>> print(s.Annotation(protein='P12345,Q4VCS5', frmt='tsv',
... col="ref,evidence",reference='PMID:,Reactome:'))

	
Annotation_from_goid(goId, max_number_of_pages=25, **kargs)

	Returns a DataFrame containing annotation on a given GO identifier

	Parameters

	protein (str [https://docs.python.org/3/library/stdtypes.html#str]) – a GO identifier

	Returns

	all outputs are stored into a Pandas.DataFrame data structure.

All parameters from [image: Annotation] are also valid except format that
is set to tsv and cols that is made of all possible column names.

	
gene_product_search(query, taxonID=None, page=1, limit=100, type=None, dbSubSet=None, proteome=None)

	

	
get_go_ancestors(query, relations='is_a,part_of,occurs_in,regulates')

	

	
get_go_chart(query)

	res = go.get_chart("GO:0022804")
with open("temp.png", "wb") as fout:
 fout.write(res)

	
get_go_children(query)

	

	
get_go_paths(_from, _to, relations='is_a,part_of,occurs_in,regulates')

	Retrieves the paths between two specified sets of ontology terms.
Each path is formed from a list of (term, relationship, term) triples.

paths = go.go_terms_path(”GO:0005215”, “GO:0003674”)
First path is found as the first item in the “results”
paths[“results”][0]

	
get_go_terms(query, max_number_of_pages=None)

	Get information on all terms and page through the result

	Parameters

	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – terms as string of comma seperated values

	
go_search(query, limit=600, page=1)

	Searches a simple user query, e.g., query=apopto

	Parameters

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	limit (int [https://docs.python.org/3/library/functions.html#int]) – max 600

	page (int [https://docs.python.org/3/library/functions.html#int]) –

8.15. Kegg

This module provides a class KEGG to access to the
REST KEGG interface. There are additional methods and functionalities added by
BioServices.

Note

a previous imterface to the KEGG WSDL service was designed but the
WSDL closed in Dec 2012.

What is KEGG ?

	URL

	http://www.kegg.jp/

	REST

	http://www.kegg.jp/kegg/rest/keggapi.html

	weblink

	http://www.genome.jp/kegg/rest/weblink.html

	dbentries

	http://www.genome.jp/kegg/rest/dbentry.html

“KEGG is a database resource for understanding high-level functions and
utilities of the biological system, such as the cell, the organism and the
ecosystem, from molecular-level information, especially large-scale molecular
datasets generated by genome sequencing and other high-throughput experimental
technologies (See Release notes for new and updated features). “

—KEGG home page, Jan 2013

8.15.1. Some terminology

The following list is a simplified list of terminology taken from KEGG API
pages.

	organisms (org) are made of a three-letter (or four-letter) code (e.g.,
hsa stands for Human Sapiens) used in KEGG (see organismIds).

	db is a database name. See databases
attribute and KEGG Databases Names and Abbreviations section.

	entry_id is a unique identifier. It is a combination of the database name
and the identifier of an entry joined by a colon sign (e.g. ‘embl:J00231’).

Here are some examples of entry Ids:

	genes_id: A KEGG organism and a gene name (e.g. ‘eco:b0001’).

	enzyme_id: ‘ec’ and an enzyme code. (e.g. ‘ec:1.1.1.1’).
See enzymeIds.

	compound_id: ‘cpd’ and a compound number (e.g. ‘cpd:C00158’).
Some compounds also have ‘glycan_id’ and
both IDs are accepted and converted internally.
See compoundIds.

	drug_id: ‘dr’ and a drug number (e.g. ‘dr:D00201’). See
drugIds.

	glycan_id: ‘gl’ and a glycan number (e.g.

	‘gl:G00050’). Some glycans also have ‘compound_id’ and both
IDs are accepted and converted internally. see
glycanIds attribute.

	reaction_id: ‘rn’ and a reaction number (e.g.

	‘rn:R00959’ is a reaction which catalyze cpd:C00103 into cpd:C00668).
See reactionIds attribute.

	pathway_id: ‘path’ and a pathway number. Pathway numbers prefixed
by ‘map’ specify the reference pathway and pathways prefixed by
a KEGG organism specify pathways specific to the organism (e.g.
‘path:map00020’, ‘path:eco00020’)
See pathwayIds attribute.

	motif_id: a motif database names (‘ps’ for prosite, ‘bl’ for blocks,
‘pr’ for prints, ‘pd’ for prodom, and ‘pf’ for pfam) and a motif entry
name. (e.g. ‘pf:DnaJ’ means a Pfam database entry ‘DnaJ’).

	ko_id: identifier made of ‘ko’ and a ko number (e.g. ‘ko:K02598’).
See koIds attribute.

8.15.2. KEGG Databases Names and Abbreviations

Here is a list of databases used in KEGG API with their name and abbreviation:

	Database Name

	Abbrev

	kid

	pathway

	path

	map number

	brite

	br

	br number

	module

	md

	M number

	disease

	ds

	H number

	drug

	dr

	D number

	environ

	ev

	E number

	orthology

	ko

	K number

	genome

	genome

	T number

	genomes

	gn

	T number

	genes

	
	

	
	

	ligand

	ligand

	
	

	compound

	cpd

	C number

	glycan

	gl

	G number

	reaction

	rn

	R number

	rpair

	rp

	RP number

	rclass

	rc

	RC number

	enzyme

	ec

	
	

8.15.3. Database Entries

Database entries can be written in on of the following ways:

<dbentries> = <dbentry>1[+<dbentry>2...]
<dbentry> = <db:entry> | <kid> | <org:gene>

Each database entry is identified by:

db:entry

where “db” is the database name or its abbreviation shown above and
“entry” is the entry name or the accession number that is uniquely
assigned within the database. In reality “db” may be omitted, for
the entry name called the KEGG object identifier (kid) is unique
across KEGG.:

kid = database-dependent prefix + five-digit number

In the KEGG GENES database the db:entry combination must be specified. This is
more specifically written as:

org:gene

where “org” is the three- or four-letter KEGG organism code or
the T number genome identifier and “gene” is the gene identifier,
usually locus_tag or ncbi GeneID, or the primary gene name.

	
class KEGG(verbose=False, cache=False)

	Interface to the KEGG [http://www.genome.jp/kegg/pathway.html] service

This class provides an interface to the KEGG REST API. The weblink tools
are partially accesible. All dbentries can be parsed into dictionaries using
the KEGGParser

Here are some examples. In order to retrieve the entry of the
gene identifier 7535 of the hsa organism, type:

from bioservices import KEGG
s = KEGG()
print(s.get("hsa:7535"))

The output is the raw ouput sent by KEGG API. See KEGGParser to
parse this output.

See also

The Database Entries to know more about the db entries format.

Another example here below shows how to print the list of pathways of
the human organism:

print(s.list("pathway", organism="hsa"))

Further post processing would allow you to retrieve the pathway Ids. However,
we provide additional functions to the KEGG API so the previous code and post
processing to extract the pathway Ids can be written as:

s.organism = "hsa"
s.pathwayIds

and similarly you can get all databases() output and database Ids easily.
For example, for the reaction database:

s.reaction # equivalent to s.list("reaction")
s.reactionIds

Other methods of interest are conv(), find(), get().

See also

KEGG Databases Names and Abbreviations, Database Entries, Some terminology.

Constructor

	Parameters

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – prints informative messages

	
Tnumber2code(Tnumber)

	Converts organism T number to its code

>>> from bioservices import KEGG
>>> s = KEGG()
>>> s.Tnumber2code("T01001")
'hsa'

	
property briteIds

	returns list of brite Ids.

See also

list()

	
code2Tnumber(code)

	Converts organism code to its T number

>>> from bioservices import KEGG
>>> s = KEGG()
>>> s.code2Tnumber("hsa")
'T01001'

	
property compoundIds

	returns list of compound Ids

See also

list()

	
conv(target, source)

	convert KEGG identifiers to/from outside identifiers

	Parameters

	
	target (str [https://docs.python.org/3/library/stdtypes.html#str]) – the target database (e.g., a KEGG organism).

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – the source database (e.g., uniprot) or a valid
dbentries; see below for details.

	Returns

	a dictionary with keys being the source and values being the target.

Here are the rules to set the target and source parameters.

If the second argument is not a dbentries, source and target
parameters can be of two types:

	gene identifiers. If the target is a KEGG Id, then the source
must be one of ncbi-gi, ncbi-geneid or uniprot.

Note

source and target can be swapped.

	chemical substance identifiers. If the target is one of the
following kegg database: drug, compound, glycan then the source
must be one of pubchem or chebi.

Note

again, source and target can be swapped

If the second argument is a dbentries, it can be again of two types:

	gene identifiers. The database used can be one ncbi-gi,
ncbi-geneid, uniprot or any KEGG organism

	chemical substance identifiers. The database used can be one of
drug, compound, glycan, pubchem or chebi only.

Note

if the second argument is a dbentries, target and dbentries
cannot be swapped.

conversion from NCBI GeneID to KEGG ID for E. coli genes
conv("eco","ncbi-geneid")
inverse of the above example
conv("eco","ncbi-geneid")
#conversion from KEGG ID to NCBI GI
conv("ncbi-gi","hsa:10458+ece:Z5100")

To make it clear by taking another example, you can either convert an
entire database to another (e.g., from uniprot to KEGG Id all human gene
IDs):

uniprot_ids, kegg_ids = s.conv("hsa", "uniprot")

or a subset by providing a valid dbentries:

s.conv("hsa","up:Q9BV86+")

Warning

call to this function may be long. conv(“hsa”, “uniprot”) takes a minute
suprinsingly, conv(“uniprot”, “hsa”) takes just a few seconds.

Changed in version 1.1: the output is now a dictionary, not a list of tuples

	
property databases

	Returns list of valid KEGG databases.

	
dbinfo(database='kegg')

	Displays the current statistics of a given database

	Parameters

	database (str [https://docs.python.org/3/library/stdtypes.html#str]) – can be one of: kegg (default), brite, module,
disease, drug, environ, ko, genome, compound, glycan, reaction,
rpair, rclass, enzyme, genomes, genes, ligand or any
organismIds.

from bioservices import KEGG
s = KEGG()
s.dbinfo("hsa") # human organism
s.dbinfo("T01001") # same as above
s.dbinfo("pathway")

Changed in version 1.4.1: renamed info method into dbinfo(),
which clashes with Logging framework info() method.

	
property drugIds

	returns list of drug Ids

See also

list()

	
entry(dbentries)

	Retrieve entry

There is a weblink service (see http://www.genome.jp/kegg/rest/weblink.html)
Since it is equivalent to get(), we do not implement it for now

	
property enzymeIds

	returns list of enzyme Ids

See also

list()

	
find(database, query, option=None)

	finds entries with matching query keywords or other query data in a given database

	Parameters

	
	database (str [https://docs.python.org/3/library/stdtypes.html#str]) – can be one of pathway, module, disease, drug,
environ, ko, genome, compound, glycan, reaction, rpair, rclass,
enzyme, genes, ligand or an organism code (see organismIds
attributes) or T number (see organismTnumbers attribute).

	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – See examples

	option (str [https://docs.python.org/3/library/stdtypes.html#str]) – If option provided, database can be only ‘compound’
or ‘drug’. Option can be ‘formula’, ‘exact_mass’ or ‘mol_weight’

Note

Keyword search against brite is not supported. Use /list/brite to
retrieve a short list.

search for pathways that contain Viral in the definition
s.find("pathway", "Viral")
for keywords "shiga" and "toxin"
s.find("genes", "shiga+toxin")
for keywords "shiga toxin"
s.find("genes", ""shiga toxin")
for chemical formula "C7H10O5"
s.find("compound", "C7H10O5", "formula")
for chemical formula containing "O5" and "C7"
s.find("compound", "O5C7","formula")
for 174.045 =< exact mass < 174.055
s.find("compound", "174.05","exact_mass")
for 300 =< molecular weight =< 310
s.find("compound", "300-310","mol_weight")

	
get(dbentries, option=None, parse=False)

	Retrieves given database entries

	param str dbentries

	KEGG database entries involving the following
database: pathway, brite, module, disease, drug, environ, ko, genome
compound, glycan, reaction, rpair, rclass, enzyme or any organism
using the KEGG organism code (see organismIds
attributes) or T number (see organismTnumbers attribute).

	param str option

	one of: aaseq, ntseq, mol, kcf, image, kgml

Note

	you can add the option at the end of dbentries in which case
	the parameter option must not be used (see example)

from bioservices import KEGG
s = KEGG()
retrieves a compound entry and a glycan entry
s.get("cpd:C01290+gl:G00092")
same as above
s.get("C01290+G00092")
retrieves a human gene entry and an E.coli O157 gene entry
s.get("hsa:10458+ece:Z5100")
retrieves amino acid sequences of a human gene and an E.coli O157 gene
s.get("hsa:10458+ece:Z5100/aaseq")
retrieves the image file of a pathway map
s.get("hsa05130/image")
same as above
s.get("hsa05130", "image")

to retrieve genome, you must preceed the entry with gn:
s.get('gn:T01001')
to retrieve a network, you must preceed it with network:
s.get('network:nt06214')

Another example here below shows how to save the image of a given pathway:

res = s.get("hsa05130/image")
 # same as : res = s.get("hsa05130","image")
 f = open("test.png", "w")
 f.write(res)
 f.close()

Note

The input is limited up to 10 entries (KEGG restriction).

	
get_pathway_by_gene(gene, organism)

	Search for pathways that contain a specific gene

	Parameters

	
	gene (str [https://docs.python.org/3/library/stdtypes.html#str]) – a valid gene Id

	organism (str [https://docs.python.org/3/library/stdtypes.html#str]) – a valid organism (e.g., hsa)

	Returns

	list of pathway Ids that contain the gene

>>> s.get_pathway_by_gene("7535", "hsa")
['path:hsa04064', 'path:hsa04650', 'path:hsa04660', 'path:hsa05340']

	
property glycanIds

	Returns list of glycan Ids

See also

list()

	
isOrganism(org)

	Checks if org is a KEGG organism

	Parameters

	org (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Returns

	True if org is in the KEGG organism list (code or Tnumber)

>>> from bioservices import KEGG
>>> s = KEGG()
>>> s.isOrganism("hsa")
True

	
property koIds

	returns list of ko Ids

See also

list()

	
link(target, source)

	Find related entries by using database cross-references

	Parameters

	
	target (str [https://docs.python.org/3/library/stdtypes.html#str]) – the target KEGG database or organism (see below for the list).

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – the source KEGG database or organism (see below for
the list) or a valid dbentries involving one of the database; see
below for details.

The valid list of databases is pathway, brite, module, disease, drug, environ,
ko, genome, compound, glycan, reaction, rpair, rclass, enzyme

KEGG pathways linked from each of the human genes
s.link("pathway", "hsa")
human genes linked from each of the KEGG pathways
s.link("hsa", "pathway")
KEGG pathways linked from a human gene and an E. coli O157 gene.
s.link("pathway", "hsa:10458+ece:Z5100")

	
list(query, organism=None)

	Returns a list of entry identifiers and associated definition for a given database or a given set of database entries

	Parameters

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – can be one of pathway, brite, module,
disease, drug, environ, ko, genome, compound,
glycan, reaction, rpair, rclass, enzyme, organism
or an organism from the organismIds attribute or a valid
dbentry (see below). If a dbentry query is provided, organism
should not be used!

	organism (str [https://docs.python.org/3/library/stdtypes.html#str]) – a valid organism identifier that can be
provided. If so, database can be only “pathway” or “module”. If
not provided, the default value is chosen (organism)

	Returns

	A string with a structure that depends on the query

Here is an example that shows how to extract the pathways IDs related to
the hsa organism:

>>> s = KEGG()
>>> res = s.list("pathway", organism="hsa")
>>> pathways = [x.split()[0] for x in res.strip().split("\n")]
>>> len(pathways) # as of Dec 2012
261

Note, however, that there are convenient aliases to some of the databases.
For instance, the pathway Ids can also be retrieved as a list from the
pathwayIds attribute (after defining the organism attribute).

Note

If you set the query to a valid organism, then the second
argument rganism is irrelevant and ignored.

Note

If the query is not a database or an organism, it is supposed
to be a valid dbentries string and the maximum number of entries is 100.

Other examples:

s.list("pathway") # returns the list of reference pathways
s.list("pathway", "hsa") # returns the list of human pathways
s.list("organism") # returns the list of KEGG organisms with taxonomic classification
s.list("hsa") # returns the entire list of human genes
s.list("T01001") # same as above
s.list("hsa:10458+ece:Z5100") # returns the list of a human gene and an E.coli O157 gene
s.list("cpd:C01290+gl:G00092")# returns the list of a compound entry and a glycan entry
s.list("C01290+G00092") # same as above

	
lookfor_organism(query)

	Look for a specific organism

	Parameters

	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – your search term. upper and lower cases are ignored

	Returns

	a list of definition that matches the query

	
lookfor_pathway(query)

	Look for a specific pathway

	Parameters

	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – your search term. upper and lower cases are ignored

	Returns

	a list of definition that matches the query

	
property moduleIds

	returns list of module Ids for the default organism.

organism must be set.

s = KEGG()
s.organism = "hsa"
s.moduleIds

	
property organism

	returns the current default organism

	
property organismIds

	Returns list of organism Ids

	
property organismTnumbers

	returns list of organisms (T numbers)

See also

list()

	
parse(entry)

	See KEGGParser for details

Parse entry returned by get()

k = KEGG()
res = k.get("hsa04150")
d = k.parse(res)

	
parse_kgml_pathway(pathwayId, res=None)

	Parse the pathway in KGML format and returns a dictionary (relations and entries)

	Parameters

	
	pathwayId (str [https://docs.python.org/3/library/stdtypes.html#str]) – a valid pathwayId e.g. hsa04660

	res (str [https://docs.python.org/3/library/stdtypes.html#str]) – if you already have the output of the query
get(pathwayId), you can provide it, otherwise it is queried.

	Returns

	a dictionary with relations and entries as keys. Values
of relations is a list of relations, each relation being
dictionary with entry1, entry2, link, value, name. The
list os entries is a list of dictionary as well.
Entry contains contains more details about the entry found in the
relation. See example below for details.

>>> res = s.parse_kgml_pathway("hsa04660")
>>> set([x['name'] for x in res['relations']])
>>> res['relations'][-1]
{'entry1': u'15',
 'entry2': u'13',
 'link': u'PPrel',
 'name': u'phosphorylation',
 'value': u'+p'}

>>> set([x['link'] for x in res['relations']])
set([u'PPrel', u'PCrel'])

>>> # get information about an entry :
>>> res['entries'][4]

See also

KEGG API [http://www.kegg.jp/kegg/xml/docs/]

	
pathway2sif(pathwayId, uniprot=True)

	Extract protein-protein interaction from KEGG pathway to a SIF format

Warning

experimental Not tested on all pathway. should be move to
another package such as cellnopt

	Parameters

	
	pathwayId (str [https://docs.python.org/3/library/stdtypes.html#str]) – a valid pathway Id

	uniprot (bool [https://docs.python.org/3/library/functions.html#bool]) – convert to uniprot Id or not (default is True)

	Returns

	a list of relations (A 1 B) for activation and (A -1 B) for
inhibitions

This is longish due to the conversion from KEGGIds to UniProt.

This method can be useful to provide prior knowledge network to software
such as CellNOpt (see http://www.cellnopt.org)

	
property pathwayIds

	returns list of pathway Ids for the default organism.

organism must be set.

s = KEGG()
s.organism = "hsa"
s.pathwayIds

	
property reactionIds

	returns list of reaction Ids

	
save_pathway(pathId, filename, scale=None, keggid={}, params={})

	Save KEGG pathway in PNG format

	Parameters

	
	pathId – a valid pathway identifier

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – output PNG file

	params – valid kegg params expected

	
show_entry(entry)

	Opens URL corresponding to a valid entry

s.www_bget("path:hsa05416")

	
show_module(modId)

	Show a given module inside a web browser

	Parameters

	modId (str [https://docs.python.org/3/library/stdtypes.html#str]) – a valid module Id. See moduleIds()

Validity of modId is not checked but if wrong the URL will not open a
proper web page.

	
show_pathway(pathId, scale=None, dcolor='pink', keggid={}, show=True)

	Show a given pathway inside a web browser

	Parameters

	
	pathId (str [https://docs.python.org/3/library/stdtypes.html#str]) – a valid pathway Id. See pathwayIds()

	scale (int [https://docs.python.org/3/library/functions.html#int]) – you can scale the image with a value between 0 and 100

	dcolor (str [https://docs.python.org/3/library/stdtypes.html#str]) – set the default background color of nodes

	keggid (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – set color of entries contained in the pathway as
key/value pairs; can also be a list, in which case all nodes have
the same default color (red)

Note

if scale is provided, dcolor and keggid are ignored.

show a pathway in the browser
s.show_pathway("path:hsa05416", scale=50)

Same as above but also highlights some KEGG Ids (red for all)
s.show_pathway("path:hsa05416", dcolor="white",
 keggid=['1525', '1604', '2534'])

You can refine the colors using a dictionary:
s.show_pathway("path:hsa05416", dcolor="white",
 keggid={'1525':'yellow,red', '1604':'blue,green', '2534':"blue"})

	
class KEGGParser(verbose=False)

	This is an extension of the KEGG class to ease parsing of dbentries

This class provides a generic method parse() that will read the output
of a dbentry returned by KEGG.get() and converts it into a dictionary ready to use.

The parse() method parses any entry. It can be a pathway, a gene, a compound…

from bioservices import *
s = KEGG()

Retrieve a KEGG entry
res = s.get("hsa04150")

parse it
d = s.parse(res)

As a pedagogical example, you can then further process this dictionary. Here below, we convert
the gene Ids found in the pathway into UniProt Ids:

Get the KEGG Ids in the pathway
kegg_geneIds = [x for x in d['GENE']]

Convert them
db_up, db_kegg = s.conv("hsa", "uniprot")

Get the corresponding uniprot Ids
indices = [db_kegg.index("hsa:%s" % x) for x in kegg_geneIds]
uniprot_geneIds = [db_up[x] for x in indices]

However, you could also have done it simply as follows:

kegg_geneIds = [x for x in d['gene']]
uprot_geneIds = [s.parse(s.get("hsa:"+str(e)))['DBLINKS']["UniProt:"] for e in d['GENE']]

Note

The 2 outputs are slightly different.

See also

http://www.kegg.jp/kegg/rest/dbentry.html

	
parse(res)

	Parse to any outputs returned by KEGG.get()

	Parameters

	res (str [https://docs.python.org/3/library/stdtypes.html#str]) – output of a KEGG.get().

	Returns

	a dictionary. Keys are those found in the KEGG entry (e.g.,
REACTION, ENTRY, EQUATION, …). The format of each value is
various. It could be a string, a list (of strings generally),
a dictionary, a float depending on the key. Depdending on
the type of the entry (e.g., module, pathway), the
type of the value may also differ (e.g., REACTION can be either
a list of reactions or a dictionary depending on the content)

>>> # Parses a drug entry
>>> res = s.get("dr:D00001")
>>> # Parses a pathway entry
>>> res = s.get("path:hsa10584")
>>> # Parses a module entry
>>> res = s.get("md:hsa_M00554")
>>> # Parses a disease entry
>>> res = s.get("ds:H00001")
>>> # Parses a environ entry
>>> res = s.get("ev:E00001")
>>> # Parses Orthology entry
>>> res = s.get("ko:K00001")
>>> # Parses a Genome entry
>>> res = s.get('genome:T00001')
>>> # Parses a gene entry
>>> res = s.get("hsa:1525")
>>> # Parses a compound entry
>>> s.get("cpd:C00001")
>>> # Parses a glycan entry
>>> res = s.get("gl:G00001")
>>> # Parses a reaction entry
>>> res = s.get("rn:R00001")
>>> # Parses a rpair entry
>>> res = s.get("rp:RP00001")
>>> # Parses a rclass entry
>>> res = s.get("rc:RC00001")
>>> # Parses an enzyme entry
>>> res = s.get('ec:1.1.1.1')

>>> d = s.parse(res)

8.16. HGNC

Interface to HUGO/HGNC web services

What is HGNC ?

	URL

	http://www.genenames.org

	Citation

	

“The HUGO Gene Nomenclature Committee (HGNC) has assigned unique gene symbols and
names to over 37,000 human loci, of which around 19,000 are protein coding.
genenames.org is a curated online repository of HGNC-approved gene nomenclature
and associated resources including links to genomic, proteomic and phenotypic
information, as well as dedicated gene family pages.”

—From HGNC web site, July 2013

	
class HGNC(verbose=False, cache=False)

	Wrapper to the genenames web service

See details at http://www.genenames.org/help/rest-web-service-help

	
fetch(database, query, frmt='json')

	Retrieve particular records from a searchable fields

Returned object is a json object with fields as in
stored_field, which is returned from get_info() method.

Only one query at a time. No wild cards are accepted.

>>> h = HGNC()
>>> h.fetch('symbol', 'ZNF3')
>>> h.fetch('alias_name', 'A-kinase anchor protein, 350kDa')

	
get_info(frmt='json')

	Request information about the service

Fields are when the server was last updated (lastModified),
the number of documents (numDoc), which fields can be queried
using search and fetch (searchableFields) and which fields may
be returned by fetch (storedFields).

	
search(database_or_query=None, query=None, frmt='json')

	Search a searchable field (database) for a pattern

The search request is more powerful than fetch for querying the
database, but search will only returns the fields hgnc_id, symbol and
score. This is because this tool is mainly intended to query the server
to find possible entries of interest or to check data (such as your own
symbols) rather than to fetch information about the genes. If you want
to retrieve all the data for a set of genes from the search result, the
user could use the hgnc_id returned by search to then fire off a fetch
request by hgnc_id.

	Parameters

	database – if not provided, search all databases.

Search all searchable fields for the tern BRAF
h.search('BRAF')

Return all records that have symbols that start with ZNF
h.search('symbol', 'ZNF*')

Return all records that have symbols that start with ZNF
followed by one and only one character (e.g. ZNF3)
Nov 2015 does not work neither here nor in within in the
official documentation
h.search('symbol', 'ZNF?')

search for symbols starting with ZNF that have been approved
by HGNC
h.search('symbol', 'ZNF*+AND+status:Approved')

return ZNF3 and ZNF12
h.search('symbol', 'ZNF3+OR+ZNF12')

Return all records that have symbols that start with ZNF which
are not approved (ie entry withdrawn)
h.search('symbol', 'ZNF*+NOT+status:Approved')

8.17. Intact (complex)

This module provides a class IntactComplex

What is Intact Complex ?

	URL

	https://www.ebi.ac.uk/intact/complex/

	REST

	https://www.ebi.ac.uk/intact/complex-ws/details/

“The Complex Portal is a manually curated, encyclopaedic resource of
macromolecular complexes from a number of key model organisms.”

—From Intact web page Feb 2015

	
class IntactComplex(verbose=False, cache=False)

	Interface to the Intact [http://www.ebi.ac.uk/intact/] service

>>> from bioservices import IntactComplex
>>> u = IntactComplex()

Constructor IntactComplex

	Parameters

	verbose – set to False to prevent informative messages

	
details(query)

	Return details about a complex

	Parameters

	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – EBI-1163476

	
search(query, frmt='json', facets=None, first=None, number=None, filters=None)

	Search for a complex inside intact complex.

	Parameters

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – the query (e.g., ndc80)

	frmt (str [https://docs.python.org/3/library/stdtypes.html#str]) – Defaults to json (could be a Pandas data frame if
Pandas is installed; set frmt to ‘pandas’)

	facets (str [https://docs.python.org/3/library/stdtypes.html#str]) – lists of facets as a string (separated by comma)

	first (int [https://docs.python.org/3/library/functions.html#int]) –

	number (int [https://docs.python.org/3/library/functions.html#int]) –

	filter (str [https://docs.python.org/3/library/stdtypes.html#str]) – list of filters. See examples here below.

s = IntactComplex()
search for ndc80
s.search('ncd80')

Search for ndc80 and facet with the species field:
s.search('ncd80', facets='species_f')

Search for ndc80 and facet with the species and biological role fields:
s.search('ndc80', facets='species_f,pbiorole_f')

Search for ndc80, facet with the species and biological role
fields and filter the species using human:
s.search('Ndc80', first=0, number=10,
 filters='species_f:("Homo sapiens")',
 facets='species_f,ptype_f,pbiorole_f')

Search for ndc80, facet with the species and biological role
fields and filter the species using human or mouse:
s.search('Ndc80, first=0, number=10,
 filters='species_f:("Homo sapiens" "Mus musculus")',
 facets='species_f,ptype_f,pbiorole_f')

Search with a wildcard to retrieve all the information:
s.search('*')

Search with a wildcard to retrieve all the information and facet
with the species, biological role and interactor type fields:
s.search('*', facets='species_f,pbiorole_f,ptype_f')

Search with a wildcard to retrieve all the information, facet with
the species, biological role and interactor type fields and filter
the interactor type using small molecule:
s.search('*', facets='species_f,pbiorole_f,ptype_f',
 filters='ptype_f:("small molecule")'

Search with a wildcard to retrieve all the information, facet with
the species, biological role and interactor type fields and filter
the interactor type using small molecule and the species using human:
s.search('*', facets='species_f,pbiorole_f,ptype_f',
 filters='ptype_f:("small molecule"),species_f:("Homo sapiens")')

Search for GO:0016491 and paginate (first is for the offset and number
is how many do you want):
s.search('GO:0016491', first=10, number=10)

The organism name used in the filter must be exact. Here is the list
found by typing:

res = set(ci.search('*', frmt='pandas')['organismName'])

'Bos taurus; 9913',
'Caenorhabditis elegans; 6239',
'Canis familiaris; 9615',
'Drosophila melanogaster; 7227',
'Escherichia coli (strain K12); 83333',
'Gallus gallus; 9031',
'Homo sapiens; 9606',
'Mus musculus; 10090',
'Oryctolagus cuniculus; 9986',
'Rattus norvegicus; 10116',
'Saccharomyces cerevisiae (strain ATCC 204508 / S288c);559292',
'Schizosaccharomyces pombe (strain 972 / ATCC 24843);284812',
'Xenopus laevis; 8355'

8.18. MUSCLE

Interface to the MUSCLE web service

What is MUSCLE ?

	URL

	http://www.drive5.com/muscle/

	service

	http://www.ebi.ac.uk/Tools/webservices/services/msa/muscle_rest

“MUSCLE - (MUltiple Sequence Comparison by Log-Expectation) 1)

is claimed to achieve both better average accuracy and better speed than
ClustalW or T-Coffee, depending on the chosen options. Multiple alignments
of protein sequences are important in many applications, including
phylogenetic tree estimation, secondary structure prediction and critical
residue identification.”

—from EMBL-EBI web page

	
class MUSCLE(verbose=False)

	Interface to the MUSCLE [http://www.ebi.ac.uk/Tools/webservices/services/msa/muscle_rest] service.

>>> from bioservices import *
>>> m = MUSCLE(verbose=False)
>>> sequencesFasta = open('filename','r')
>>> jobid = n.run(frmt="fasta", sequence=sequencesFasta.read(),
 email="name@provider")
>>> s.getResult(jobid, "out")

Warning

It is very important to provide a real e-mail address as your
job otherwise very likely will be killed and your IP, Organisation or
entire domain black-listed.

Here is another similar example but we use UniProt
class provided in bioservices to fetch the FASTA sequences:

>>> from bioservices import UniProt, MUSCLE
>>> u = UniProt(verbose=False)
>>> f1 = u.get_fasta("P18413")
>>> f2 = u.get_fasta("P18412")
>>> m = MUSCLE(verbose=False)
>>> jobid = m.run(frmt="fasta", sequence=f1+f2, email="name@provider")
>>> m.getResult(jobid, "out")

	
get_parameter_details(parameterId)

	Get detailed information about a parameter.

	Returns

	An XML document providing details about the parameter or a list
of values that can take the parameters if the XML could be parsed.

For example:

>>> n.get_parameter_details("format")

	
get_parameters()

	List parameter names.

	Returns

	An XML document containing a list of parameter names.

>>> from bioservices import muscle
>>> n = muscle.Muscle()
>>> res = n.get_parameters()
>>> [x.text for x in res.findAll("id")]

See also

parameters to get a list of the parameters without
need to process the XML output.

	
get_result(jobid, result_type)

	Get the job result of the specified type.

	Parameters

	
	jobid (str [https://docs.python.org/3/library/stdtypes.html#str]) – a job identifier returned by run().

	resultType (str [https://docs.python.org/3/library/stdtypes.html#str]) – type of result to retrieve. See getResultTypes().

	
get_result_types(jobid)

	Get available result types for a finished job.

	Parameters

	
	jobid (str [https://docs.python.org/3/library/stdtypes.html#str]) – a job identifier returned by run().

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – print the identifiers together with their label,
mediaTypes, description and filesuffix.

	Returns

	A dictionary, which keys correspond to the identifiers. Each
identifier is itself a dictionary containing the label, description,
file suffix and mediaType of the identifier.

	
get_status(jobid)

	Get status of a submitted job

	Parameters

	
	jobid (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	jobid – a job identifier returned by run().

	Returns

	A string giving the jobid status (e.g. FINISHED).

The values for the status are:

	RUNNING: the job is currently being processed.

	FINISHED: job has finished, and the results can then be retrieved.

	ERROR: an error occurred attempting to get the job status.

	FAILURE: the job failed.

	NOT_FOUND: the job cannot be found.

	
property parameters

	

	
run(frmt=None, sequence=None, tree='none', email=None)

	Submit a job with the specified parameters.

Compulsary arguments

	Parameters

	
	frmt (str [https://docs.python.org/3/library/stdtypes.html#str]) – input format (e.g., fasta)

	sequence (str [https://docs.python.org/3/library/stdtypes.html#str]) – query sequence. The use of fasta formatted sequence is recommended.

	tree (str [https://docs.python.org/3/library/stdtypes.html#str]) – tree type (‘none’,’tree1’,’tree2’)

	email (str [https://docs.python.org/3/library/stdtypes.html#str]) – a valid email address. Will be checked by the service itself.

	Returns

	A jobid that can be analysed with getResult(),
getStatus(), …

The up to data values accepted for each of these parameters can be
retrieved from the get_parameter_details().

For instance,:

from bioservices import MUSCLE
m = MUSCLE()
m.parameterDetails("tree")

Example:

jobid = m.run(frmt="fasta",
 sequence=sequence_example,
 email="test@yahoo.fr")

frmt can be a list of formats:

frmt=['fasta','clw','clwstrict','html','msf','phyi','phys']

The returned object is a jobid, which status can be checked. It must be
finished before analysing/geeting the results.

See also

getResult()

	
wait(jobId, checkInterval=5, verbose=True)

	This function checks the status of a jobid while it is running

	Parameters

	
	jobid (str [https://docs.python.org/3/library/stdtypes.html#str]) – a job identifier returned by run().

	checkInterval (int [https://docs.python.org/3/library/functions.html#int]) – interval between requests in seconds.

8.19. MyGeneInfo

Interface to the mygeneinfo web Service.

What is MyGeneInfo ?

	URL

	https://mygene.info

	REST

	https://mygeneinfo/v3.api/

MyGene.info provides simple-to-use REST web services to query/retrieve gene
annotation data. It’s designed with simplicity and performance emphasized. You
can use it to power a web application which requires querying genes and
obtaining common gene annotations. For example, MyGene.info services are used to
power BioGPS; or use it in an analysis pipeline to retrieve always up-to-date
gene annotations.

—mygene.info home page, June 2020

	
class MyGeneInfo(verbose=False, cache=False)

	Interface to mygene.infoe [http://mygene.info] service

>>> from bioservices import MyGeneInfo
>>> s = MyGeneInfo()

Constructor

	Parameters

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – prints informative messages (default is off)

	
get_genes(ids, fields='symbol,name,taxid,entrezgene,ensemblgene', species=None, dotfield=True, email=None)

	Get matching gene objects for a list of gene ids

	Parameters

	
	ids – list of geneinfo IDs

	fields (str [https://docs.python.org/3/library/stdtypes.html#str]) – a comma-separated fields to limit the fields returned
from the matching gene hits. The supported field names can be found from any
gene object (e.g. http://mygene.info/v3/gene/1017). Note that it supports dot
notation as well, e.g., you can pass “refseq.rna”. If “fields=all”, all
available fields will be returned. Default:
“symbol,name,taxid,entrezgene,ensemblgene”.

	species (str [https://docs.python.org/3/library/stdtypes.html#str]) – can be used to limit the gene hits from given
species. You can use “common names” for nine common species (human, mouse, rat,
fruitfly, nematode, zebrafish, thale-cress, frog and pig). All other species,
you can provide their taxonomy ids. Multiple species can be passed using comma
as a separator. Default: human,mouse,rat.

	dotfield – control the format of the returned fields when passed
“fields” parameter contains dot notation, e.g. “fields=refseq.rna”. If True
the returned data object contains a single “refseq.rna” field, otherwise
(False), a single “refseq” field with a sub-field of “rna”. Default:
True.

	email" (str [https://docs.python.org/3/library/stdtypes.html#str]) – If you are regular users of this services, the
mygeneinfo maintainers/authors encourage you to provide an email,
so that we can better track the usage or follow up with you.

mgi = MyGeneInfoe()
mgi.get_genes(("301345,22637"))
first one is rat, second is mouse. This will return a 'notfound'
entry and the second entry as expected.
mgi.get_genes("301345,22637", species="mouse")

	
get_metadata()

	

	
get_one_gene(geneid, fields='symbol,name,taxid,entrezgene,ensemblgene', dotfield=True, email=None)

	Get matching gene objects for one gene id

	Parameters

	
	geneid – a valid gene ID

	fields (str [https://docs.python.org/3/library/stdtypes.html#str]) – a comma-separated fields to limit the fields returned
from the matching gene hits. The supported field names can be found from any
gene object (e.g. http://mygene.info/v3/gene/1017). Note that it supports dot
notation as well, e.g., you can pass “refseq.rna”. If “fields=all”, all
available fields will be returned. Default:
“symbol,name,taxid,entrezgene,ensemblgene”.

	dotfield – control the format of the returned fields when passed
“fields” parameter contains dot notation, e.g. “fields=refseq.rna”. If True
the returned data object contains a single “refseq.rna” field, otherwise
(False), a single “refseq” field with a sub-field of “rna”. Default:
True.

	email" (str [https://docs.python.org/3/library/stdtypes.html#str]) – If you are regular users of this services, the
mygeneinfo maintainers/authors encourage you to provide an email,
so that we can better track the usage or follow up with you.

mgi = MyGeneInfoe()
mgi.get_genes("301345")

	
get_one_query(query, email=None, dotfield=True, fields='symbol,name,taxid,entrezgene,ensemblgene', species='human,mouse,rat', size=10, _from=0, sort=None, facets=None, entrezonly=False, ensemblonly=False)

	Make gene query and return matching gene list. Support JSONP and CORS as well.

	Parameters

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – Query string. Examples “CDK2”, “NM_052827”, “204639_at”,
“chr1:151,073,054-151,383,976”, “hg19.chr1:151073054-151383976”. The detailed
query syntax can be found from our docs.

	fields (str [https://docs.python.org/3/library/stdtypes.html#str]) – a comma-separated fields to limit the fields returned
from the matching gene hits. The supported field names can be found from any
gene object (e.g. http://mygene.info/v3/gene/1017). Note that it supports dot
notation as well, e.g., you can pass “refseq.rna”. If “fields=all”, all
available fields will be returned. Default:
“symbol,name,taxid,entrezgene,ensemblgene”.

	species (str [https://docs.python.org/3/library/stdtypes.html#str]) – can be used to limit the gene hits from given species. You can use
“common names” for nine common species (human, mouse, rat, fruitfly, nematode,
zebrafish, thale-cress, frog and pig). All other species, you can provide their
taxonomy ids. Multiple species can be passed using comma as a separator.
Default: human,mouse,rat.

	size (int [https://docs.python.org/3/library/functions.html#int]) – the maximum number of matching gene hits to return
(with a cap of 1000 at the moment). Default: 10.

	_from (int [https://docs.python.org/3/library/functions.html#int]) – the number of matching gene hits to skip, starting
from 0. Combining with “size” parameter, this can be useful for paging. Default:
0.

	sort – the comma-separated fields to sort on. Prefix with “-” for
descending order, otherwise in ascending order. Default: sort by matching scores
in decending order.

	facets (str [https://docs.python.org/3/library/stdtypes.html#str]) – a single field or comma-separated fields to return
facets, for example, “facets=taxid”, “facets=taxid,type_of_gene”.

	entrezonly (bool [https://docs.python.org/3/library/functions.html#bool]) – when passed as True, the query returns only the hits
with valid Entrez gene ids. Default: False.

	ensembleonly (bool [https://docs.python.org/3/library/functions.html#bool]) – when passed as True, the query returns only the hits
with valid Ensembl gene ids. Default: False.

	dotfield – control the format of the returned fields when passed
“fields” parameter contains dot notation, e.g. “fields=refseq.rna”. If True
the returned data object contains a single “refseq.rna” field, otherwise
(False), a single “refseq” field with a sub-field of “rna”. Default:
True.

	email" (str [https://docs.python.org/3/library/stdtypes.html#str]) – If you are regular users of this services, the
mygeneinfo maintainers/authors encourage you to provide an email,
so that we can better track the usage or follow up with you.

	
get_queries(query, email=None, dotfield=True, scopes='all', species='human,mouse,rat', fields='symbol,name,taxid,entrezgene,ensemblgene')

	Make gene query and return matching gene list. Support JSONP and CORS as well.

	Parameters

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – Query string. Examples “CDK2”, “NM_052827”, “204639_at”,
“chr1:151,073,054-151,383,976”, “hg19.chr1:151073054-151383976”. The detailed
query syntax can be found from our docs.

	fields (str [https://docs.python.org/3/library/stdtypes.html#str]) – a comma-separated fields to limit the fields returned
from the matching gene hits. The supported field names can be found from any
gene object (e.g. http://mygene.info/v3/gene/1017). Note that it supports dot
notation as well, e.g., you can pass “refseq.rna”. If “fields=all”, all
available fields will be returned. Default:
“symbol,name,taxid,entrezgene,ensemblgene”.

	species (str [https://docs.python.org/3/library/stdtypes.html#str]) – can be used to limit the gene hits from given species. You can use
“common names” for nine common species (human, mouse, rat, fruitfly, nematode,
zebrafish, thale-cress, frog and pig). All other species, you can provide their
taxonomy ids. Multiple species can be passed using comma as a separator.
Default: human,mouse,rat.

	dotfield – control the format of the returned fields when passed
“fields” parameter contains dot notation, e.g. “fields=refseq.rna”. If True
the returned data object contains a single “refseq.rna” field, otherwise
(False), a single “refseq” field with a sub-field of “rna”. Default:
True.

	email" (str [https://docs.python.org/3/library/stdtypes.html#str]) – If you are regular users of this services, the
mygeneinfo maintainers/authors encourage you to provide an email,
so that we can better track the usage or follow up with you.

	scopes (str [https://docs.python.org/3/library/stdtypes.html#str]) – not documented. Set to ‘all’

	
get_taxonomy()

	

8.20. NCBIblast

Interface to the NCBIBLAST web service

What is NCBIBLAST ?

	URL

	http://blast.ncbi.nlm.nih.gov/

	service

	http://www.ebi.ac.uk/Tools/webservices/services/sss/ncbi_blast_rest

“NCBI BLAST - Protein Database Query

The emphasis of this tool is to find regions of sequence similarity,
which will yield functional and evolutionary clues about the structure
and function of your novel sequence.”

—from NCBIblast web page

	
class NCBIblast(verbose=False)

	Interface to the NCBIblast [http://blast.ncbi.nlm.nih.gov/] service.

>>> from bioservices import *
>>> s = NCBIblast(verbose=False)
>>> jobid = s.run(program="blastp", sequence=s._sequence_example,
 stype="protein", database="uniprotkb", email="name@provider")
>>> s.getResult(jobid, "out")

Warning

It is very important to provide a real e-mail address as your
job otherwise very likely will be killed and your IP, Organisation or
entire domain black-listed.

When running a blast request, a program is required. You can obtain the
list using:

>>> s.parametersDetails("program")
[u'blastp', u'blastx', u'blastn', u'tblastx', u'tblastn']

	blastn: Search a nucleotide database using a nucleotide query

	blastp: Search protein database using a protein query

	blastx: Search protein database using a translated nucleotide query

	tblastn Search translated nucleotide database using a protein query

	tblastx Search translated nucleotide database using a translated nucleotide query

NCBIblast constructor

	Parameters

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – prints informative messages

	
property databases

	Returns accepted databases.

	
get_parameter_details(parameterId)

	Get detailed information about a parameter.

	Returns

	An XML document providing details about the parameter or a list
of values that can take the parameters if the XML could be parsed.

For example:

>>> s.parameter_details("matrix")
[u'BLOSUM45',
 u'BLOSUM50',
 u'BLOSUM62',
 u'BLOSUM80',
 u'BLOSUM90',
 u'PAM30',
 u'PAM70',
 u'PAM250']

	
get_parameters()

	List parameter names.

	Returns

	An XML document containing a list of parameter names.

>>> from bioservices import ncbiblast
>>> n = ncbiblast.NCBIblast()
>>> res = n.get_parameters()
>>> [x.text for x in res.findAll("id")]

See also

parameters to get a list of the parameters without
need to process the XML output.

	
get_result(jobid, result_type)

	Get the job result of the specified type.

	param str jobid

	a job identifier returned by run().

	param str result_type

	type of result to retrieve. See getResultTypes().

The output from the tool itself.
Use the ‘format’ parameter to retireve the output in different formats,
the ‘compressed’ parameter to retrieve the xml output in compressed form.
Format options:

0 = pairwise,
1 = query-anchored showing identities,
2 = query-anchored no identities,
3 = flat query-anchored showing identities,
4 = flat query-anchored no identities,
5 = XML Blast output,
6 = tabular,
7 = tabular with comment lines,
8 = Text ASN.1,
9 = Binary ASN.1,
10 = Comma-separated values,
11 = BLAST archive format (ASN.1).

See NCBI Blast documentation for details.
Use the ‘compressed’ parameter to return the XML output in compressed form.
e.g. ‘?format=5&compressed=true’.

	
get_result_types(jobid)

	Get available result types for a finished job.

	Parameters

	
	jobid (str [https://docs.python.org/3/library/stdtypes.html#str]) – a job identifier returned by run().

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – print the identifiers together with their label,
mediaTypes, description and filesuffix.

	Returns

	A dictionary, which keys correspond to the identifiers. Each
identifier is itself a dictionary containing the label, description,
file suffix and mediaType of the identifier.

	
get_status(jobid)

	Get status of a submitted job

	Parameters

	
	jobid (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	jobid – a job identifier returned by run().

	Returns

	A string giving the jobid status (e.g. FINISHED).

The values for the status are:

	RUNNING: the job is currently being processed.

	FINISHED: job has finished, and the results can then be retrieved.

	ERROR: an error occurred attempting to get the job status.

	FAILURE: the job failed.

	NOT_FOUND: the job cannot be found.

	
property parameters

	

	
run(program=None, database=None, sequence=None, stype='protein', email=None, **kargs)

	Submit a job with the specified parameters.

Compulsary arguments

	Parameters

	
	program (str [https://docs.python.org/3/library/stdtypes.html#str]) – BLAST program to use to perform the search (e.g., blastp)

	sequence (str [https://docs.python.org/3/library/stdtypes.html#str]) – query sequence. The use of fasta formatted sequence is recommended.

	database (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of database names for search or possible a single string (for one database).
There are some mismatch between the output of parametersDetails(“database”) and
the accepted values. For instance UniProt Knowledgebase should be
given as “uniprotkb”.

	email (str [https://docs.python.org/3/library/stdtypes.html#str]) – a valid email address. Will be checked by the service itself.

Optional arguments. If not provided, a default value will be used

	Parameters

	
	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – query sequence type in ‘dna’, ‘rna’ or ‘protein’ (default is protein).

	matrix (str [https://docs.python.org/3/library/stdtypes.html#str]) – scoring matrix to be used in the search (e.g., BLOSUM45).

	gapalign (bool [https://docs.python.org/3/library/functions.html#bool]) – perform gapped alignments.

	alignments (int [https://docs.python.org/3/library/functions.html#int]) – maximum number of alignments displayed in the output.

	exp – E-value threshold.

	filter (bool [https://docs.python.org/3/library/functions.html#bool]) – low complexity sequence filter to process the query
sequence before performing the search.

	scores (int [https://docs.python.org/3/library/functions.html#int]) – maximum number of scores displayed in the output.

	dropoff (int [https://docs.python.org/3/library/functions.html#int]) – amount score must drop before extension of hits is halted.

	match_scores – match/miss-match scores to generate a scoring matrix
for nucleotide searches.

	gapopen (int [https://docs.python.org/3/library/functions.html#int]) – penalty for the initiation of a gap.

	gapext (int [https://docs.python.org/3/library/functions.html#int]) – penalty for each base/residue in a gap.

	seqrange – region of the query sequence to use for the search.
Default: whole sequence.

	Returns

	A jobid that can be analysed with getResult(),
getStatus(), …

The up to data values accepted for each of these parameters can be
retrieved from the get_parameter_details().

For instance,:

from bioservices import NCBIblast
n = NCBIblast()
n.get_parameter_details("program")

Example:

jobid = n.run(program="blastp",
 sequence=n._sequence_example,
 stype="protein",
 database="uniprotkb",
 email="test@yahoo.fr")

Database can be a list of databases:

database=["uniprotkb", "uniprotkb_swissprot"]

The returned object is a jobid, which status can be checked. It must be
finished before analysing/geeting the results.

See also

getResult()

Warning

Cases are not important. Spaces in the database case should
be replaced by underscore.

Note

database returned by the server have meaningless names since
they do not map to the expected names. An example is “ENA Sequence Release”
that should be provided as em_rel

http://www.ebi.ac.uk/Tools/sss/ncbiblast/help/index-nucleotide.html

	
wait(jobId)

	This function checks the status of a jobid while it is running

	Parameters

	
	jobid (str [https://docs.python.org/3/library/stdtypes.html#str]) – a job identifier returned by run().

	checkInterval (int [https://docs.python.org/3/library/functions.html#int]) – interval between requests in seconds.

8.21. OmniPath Commons

Interface to OmniPath web service

What is OmniPath ?

	URL

	http://omnipathdb.org

	URL

	https://github.com/saezlab/pypath/blob/master/webservice.rst

A comprehensive collection of literature curated human signaling pathways.

—From OmniPath web site, March 2016

	
class OmniPath(verbose=False, cache=False)

	Interface to the OmniPath [http://www.ebi.ac.uk/unichem/] service

>>> from bioservices import OmniPath
>>> o = OmniPath()
>>> net = o.get_network()
>>> interactions = o.get_interactions('P00533')

Constructor OmniPath

	Parameters

	verbose – set to False to prevent informative messages

	
get_about()

	Information about the version

	
get_info()

	Currently returns HTML page

	
get_interactions(query='', frmt='json', fields=[])

	Interactions of proteins

	Parameters

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – a valid uniprot identifier (e.g. P00533). It can also
be a list of uniprot identifiers, or a string with
comma-separated identifiers.

	fields (str [https://docs.python.org/3/library/stdtypes.html#str]) – additional fields to be added to the output
(e.g., sources, references)

	frmt (str [https://docs.python.org/3/library/stdtypes.html#str]) – format of the output (json or tabular)

Example:

res_one = o.get_interactions('P00533')
res_many = o.get_interactions('P00533,O15117,Q96FE5')
res_many = o.get_interactions(['P00533','O15117','Q96FE5'])

res_one = o.get_interactions('P00533', fields='sources')
res_one = o.get_interactions('P00533', fields=['source'])
res_one = o.get_interactions('P00533', fields=['source', 'references'])

You may also keep query to an empty string, but the entire DB will then
be downloaded. This may take time and the timeout may need to be
increased manually.

If frmt is set to TSV, the output is a TSV table with a header. If set
to json, a dictionary is returned.

	
get_network(frmt='json')

	Get basic statistics about the whole network including sources

	
get_ptms(query='', ptm_type=None, frmt='json', fields=[])

	List enzymes, substrates and PTMs

	Parameters

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – a valid uniprot identifier (e.g. P00533). It can also
be a list of uniprot identifiers, or a string with
comma-separated identifiers.

	ptm_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – restrict the output to this type of PTM
(e.g., phosphorylation)

	fields (str [https://docs.python.org/3/library/stdtypes.html#str]) – additional fields to be added to the output
(e.g., sources, references)

	
get_resources(frmt='json')

	Return statistics about the databases and their contents

8.22. Panther

Interface to some part of the Panther web service

What is Panther ?

	URL

	http://www.panther.org

	Citation

	

The PANTHER (Protein ANalysis THrough Evolutionary Relationships)
Classification System was designed to classify proteins (and
their genes) in order to facilitate high-throughput analysis.
Proteins have been classified according to:

	Family and subfamily: families are groups of evolutionarily related
proteins; subfamilies are related proteins that also have the same function

	Molecular function: the function of the protein by itself or with directly
interacting proteins at a biochemical level, e.g. a protein kinase

	Biological process: the function of the protein in the context of a larger
network of proteins that interact to accomplish a process at the level of the
cell or organism, e.g. mitosis.

	Pathway: similar to biological process, but a pathway also explicitly
specifies the relationships between the interacting molecules.

—From PantherDB (about) , Feb 2020

	
class Panther(verbose=True, cache=False)

	Interface to Panther [http://www.pantherdb.org/services/oai/pantherdb] pages

>>> from bioservics import Panther
>>> p = Panther()
>>> p.get_supported_genomes()
>>> p.get_ortholog("zap70", 9606)

>>> from bioservics import Panther
>>> p = Panther()
>>> taxon = [x[0]['taxon_id'] for x in p.get_supported_genomes() if "coli" in x['name'].lower()]
>>> # you may also use our method called search_organism
>>> taxon = p.get_taxon_id(pattern="coli")
>>> res = p.get_mapping("abrB,ackA,acuI", taxon)

The get_mapping returns for each gene ID the GO terms corresponding to each
ID. Those go terms may belong to different categories (see
meth:get_annotation_datasets):

	MF for molecular function

	BP for biological process

	PC for Protein class

	CC Cellular location

	Pathway

Note that results from the website application http://pantherdb.org/
do not agree with the oupput of the get_mapping service… Try out the dgt
gene from ecoli for example

Constructor

	Parameters

	verbose – set to False to prevent informative messages

	
get_annotation_datasets()

	Retrieve the list of supported annotation data sets

	
get_enrichment(gene_list, organism, annotation, enrichment_test='Fisher', correction='FDR', ref_gene_list=None)

	Returns over represented genes

Compares a test gene list to a reference gene list,
and determines whether a particular class (e.g. molecular function,
biological process, cellular component, PANTHER protein class, the
PANTHER pathway or Reactome pathway) of genes is overrepresented
or underrepresented.

	Parameters

	
	organism – a valid taxon ID

	enrichment_test – either Fisher or Binomial test

	correction – correction for multiple testing. Either FDR,
Bonferonni, or None.

	annotation – one of the supported PANTHER annotation data types.
See get_annotation_datasets() to retrieve a list of
supported annotation data types

	ref_gene_list – if not specified, the system will use all the genes
for the specified organism. Otherwise, a list delimited by
comma. Maximum of 100000 Identifiers can be any of the
following: Ensemble gene identifier, Ensemble protein
identifier, Ensemble transcript identifier, Entrez gene id,
gene symbol, NCBI GI, HGNC Id, International protein index id,
NCBI UniGene id, UniProt accession andUniProt id.

	Returns

	a dictionary with the following keys. ‘reference’ contains the
orgnaism, ‘input_list’ is the input gene list with unmapped genes.
‘result’ contains the list of candidates.

>>> from bioservices import Panther
>>> p = Panther()
>>> res = p.get_enrichment('zap70,mek1,erk', 9606, "GO:0008150")
>>> For molecular function, use :
>>> res = p.get_enrichment('zap70,mek1,erk', 9606,
 "ANNOT_TYPE_ID_PANTHER_GO_SLIM_MF")

	
get_family_msa(family, taxon_list=None)

	Returns MSA information for the specified family.

	Parameters

	
	family – family ID

	taxon_list – Zero or more taxon IDs separated by ‘,’.

	
get_family_ortholog(family, taxon_list=None)

	Search for matching orthologs in target organisms

Also return the corresponding position in the target
organism sequence. The system searches for matching
orthologs in the gene family that contains the search
gene associated with the search term.

	Parameters

	
	family – Family ID

	taxon_list – Zero or more taxon IDs separated by ‘,’.

	
get_homolog_position(gene, organism, position, ortholog_type='all')

	
	Parameters

	
	gene – Can be any of the following: Ensemble gene identifier,
Ensemble protein identifier, Ensemble transcript identifier, Entrez gene id,
gene symbol, NCBI GI, HGNC Id, International protein index id, NCBI UniGene id,
UniProt accession andUniProt id

	organism – a valid taxon ID

	ortholog_type – optional parameter to specify ortholog type of target organism

	
get_mapping(gene_list, taxon)

	Map identifiers

Each identifier to be delimited by comma i.e. ‘,. Maximum of 1000 Identifiers
can be any of the following: Ensemble gene identifier, Ensemble protein
identifier, Ensemble transcript identifier, Entrez gene id, gene symbol, NCBI
GI, HGNC Id, International protein index id, NCBI UniGene id, UniProt accession
and UniProt id

	Parameters

	
	gene_list – see above

	taxon – one taxon ID. See supported
get_supported_genomes()

If an identifier is not found, information can be found in the
unmapped_genes key while found identifiers are in the mapped_genes key.

Warning

found and not found identifiers are dispatched into
unmapped and mapped genes. If there are not found identifiers,
the input gene list and the mapped genes list do not have the same
length. The input names are not stored in the output.
Developpers should be aware of that feature.

	
get_ortholog(gene_list, organism, target_organism=None, ortholog_type='all')

	search for matching orthologs in target organisms.

Searches for matching orthologs in the gene family that contains
the search gene associated with the search terms. Returns
ortholog genes in target organisms given a search organism,
the search terms and a list of target organisms.

	Parameters

	
	gene_list –

	organism – a valid taxon ID

	target_organism – zero or more taxon IDs separated by ‘,’. See
get_supported_genomes()

	ortholog_type – optional parameter to specify ortholog type of target organism

	Returns

	a dictionary with “mapped” and “unmapped” keys, each of them
being a list. For each unmapped gene, a dictionary with id and
organism is is returned. For the mapped gene, a list of ortholog is
returned.

	
get_pathways()

	Returns all pathways from pantherdb

	
get_supported_families(N=1000, progress=True)

	Returns the list of supported PANTHER family IDs

This services returns only 1000 items per request. This is defined by
the index. For instance index set to 1 returns the first 1000 families.
Index set to 2 returns families between index 1000 and 2000 and so on.
As of 20 Feb 2020, there was about 15,000 families.

This function simplifies your life by calling the service as many times
as required. Therefore it returns all families in one go.

	
get_supported_genomes(type=None)

	Returns list of supported organisms.

	Parameters

	type – can be chrLoc to restrict the search

	
get_taxon_id(pattern=None)

	return all taxons supported by the service

If pattern is provided, we filter the name to keep those that contain
the filter. If only one is found, we return the name itself, otherwise a
list of candidates

	
get_tree_info(family, taxon_list=None)

	Returns tree topology information and node attributes for the specified family.

	Parameters

	
	family – Family ID

	taxon_list – Zero or more taxon IDs separated by ‘,’.

8.23. Pathway Commons

This module provides a class PathwayCommons

What is PathwayCommons ?

	URL

	http://www.pathwaycommons.org/about

	REST

	

Pathway Commons is a convenient point of access to biological pathway
information collected from public pathway databases, which you can
search, visualize and download. All data is freely available, under the
license terms of each contributing database.

—PathwayCommons home page, Nov 2013

Data is freely available, under the license terms of each contributing database.

	
class PathwayCommons(verbose=True, cache=False)

	Interface to the PathwayCommons [http://www.pathwaycommons.org/about] service

>>> from bioservices import *
>>> pc2 = PathwayCommons(verbose=False)
>>> res = pc2.get("http://identifiers.org/uniprot/Q06609")

Todo

traverse() method not implemented.

Constructor

	Parameters

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – prints informative messages

	
property default_extension

	set extension of the requests (default is json). Can be ‘json’ or ‘xml’

	
get(uri, frmt='BIOPAX')

	Retrieves full pathway information for a set of elements

elements can be for example pathway, interaction or physical
entity given the RDF IDs. Get commands only
retrieve the BioPAX elements that are directly mapped to the ID.
Use the traverse() query to traverse BioPAX graph and
obtain child/owner elements.

	Parameters

	
	uri (str [https://docs.python.org/3/library/stdtypes.html#str]) – valid/existing BioPAX element’s URI (RDF ID; for
utility classes that were “normalized”, such as entity refereneces
and controlled vocabularies, it is usually a Identifiers.org URL.
Multiple IDs can be provided using list
uri=[http://identifiers.org/uniprot/Q06609,
http://identifiers.org/uniprot/Q549Z0’]
See also about MIRIAM and Identifiers.org.

	format (str [https://docs.python.org/3/library/stdtypes.html#str]) – output format (values)

	Returns

	a complete BioPAX representation for the record
pointed to by the given URI is returned. Other output
formats are produced by converting the BioPAX record on
demand and can be specified by the optional format
parameter. Please be advised that with some output formats
it might return “no result found” error if the conversion is
not applicable for the BioPAX result. For example,
BINARY_SIF output usually works if there are some
interactions, complexes, or pathways in the retrieved set
and not only physical entities.

>>> from bioservices import PathwayCommons
>>> pc2 = PathwayCommons(verbose=False)
>>> res = pc2.get("col5a1")
>>> res = pc2.get("http://identifiers.org/uniprot/Q06609")

	
get_sifgraph_common_stream(source, limit=1, direction='DOWNSTREAM', pattern=None)

	finds the common stream for them; extracts a sub-network from the loaded
Pathway Commons SIF model.

	Parameters

	
	source – set of gene identifiers (HGNC symbol). Can be a list of
identifiers or just one string(if only one identifier)

	limit (int [https://docs.python.org/3/library/functions.html#int]) – Graph traversal depth. Limit > 1 value can result
in very large data or error.

	direction (str [https://docs.python.org/3/library/stdtypes.html#str]) – Graph traversal direction. Use UNDIRECTED if you want
to see interacts-with relationships too.

	pattern (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filter by binary relationship (SIF edge) type(s).
one of “BOTHSTREAM”, “UPSTREAM”, “DOWNSTREAM”, “UNDIRECTED”.

	returns: the graph in SIF format. The output must be stripped and
	returns one line per relation. In each line, items are separated by
a tabulation. You can save the text with .sif extensions and it
should be ready to use e.g. in cytoscape viewer.

res = pc.get_sifgraph_common_stream(['BRD4', 'MYC'])

	
get_sifgraph_neighborhood(source, limit=1, direction='BOTHSTREAM', pattern=None)

	finds the neighborhood sub-network in the Pathway Commons Simple Interaction
Format (extented SIF) graph (see http://www.pathwaycommons.org/pc2/formats#sif)

	Parameters

	
	source – set of gene identifiers (HGNC symbol). Can be a list of
identifiers or just one string(if only one identifier)

	limit (int [https://docs.python.org/3/library/functions.html#int]) – Graph traversal depth. Limit > 1 value can result
in very large data or error.

	direction (str [https://docs.python.org/3/library/stdtypes.html#str]) – Graph traversal direction. Use UNDIRECTED if you want
to see interacts-with relationships too.

	pattern (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filter by binary relationship (SIF edge) type(s).
one of “BOTHSTREAM”, “UPSTREAM”, “DOWNSTREAM”, “UNDIRECTED”.

	returns: the graph in SIF format. The output must be stripped and
	returns one line per relation. In each line, items are separated by
a tabulation. You can save the text with .sif extensions and it
should be ready to use e.g. in cytoscape viewer.

res = pc.get_sifgraph_neighborhood('BRD4')

	
get_sifgraph_pathsbetween(source, limit=1, directed=False, pattern=None)

	finds the paths between them; extracts a sub-network from the Pathway Commons SIF graph.

	Parameters

	
	source – set of gene identifiers (HGNC symbol). Can be a list of
identifiers or just one string(if only one identifier)

	limit (int [https://docs.python.org/3/library/functions.html#int]) – Graph traversal depth. Limit > 1 value can result
in very large data or error.

	directed (bool [https://docs.python.org/3/library/functions.html#bool]) – Directionality: ‘true’ is for DOWNSTREAM/UPSTREAM, ‘false’ - UNDIRECTED

	pattern (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filter by binary relationship (SIF edge) type(s).
one of “BOTHSTREAM”, “UPSTREAM”, “DOWNSTREAM”, “UNDIRECTED”.

	returns: the graph in SIF format. The output must be stripped and
	returns one line per relation. In each line, items are separated by
a tabulation. You can save the text with .sif extensions and it
should be ready to use e.g. in cytoscape viewer.

	
get_sifgraph_pathsfromto(source, target, limit=1, pattern=None)

	finds the paths between them; extracts a sub-network from the Pathway Commons SIF graph.

	Parameters

	source – set of gene identifiers (HGNC symbol). Can be a list of
identifiers or just one string(if only one identifier)

param target: A target set of gene identifiers.
:param int limit: Graph traversal depth. Limit > 1 value can result

in very large data or error.

	Parameters

	pattern (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filter by binary relationship (SIF edge) type(s).
one of “BOTHSTREAM”, “UPSTREAM”, “DOWNSTREAM”, “UNDIRECTED”.

	returns: the graph in SIF format. The output must be stripped and
	returns one line per relation. In each line, items are separated by
a tabulation. You can save the text with .sif extensions and it
should be ready to use e.g. in cytoscape viewer.

	
graph(kind, source, target=None, direction=None, limit=1, frmt=None, datasource=None, organism=None)

	Finds connections and neighborhoods of elements

Connections can be for example the shortest path between two proteins
or the neighborhood for a particular protein state or all states.

Graph searches take detailed BioPAX semantics such as generics or
nested complexes into account and traverse the graph accordingly.
The starting points can be either physical entites or entity references.

In the case of the latter the graph search starts from ALL
the physical entities that belong to that particular entity references,
i.e. all of its states. Note that we integrate BioPAX data from
multiple databases based on our proteins and small molecules data
warehouse and consistently normalize UnificationXref, EntityReference,
Provenance, BioSource, and ControlledVocabulary objects when we are
absolutely sure that two objects of the same type are equivalent. We,
however, do not merge physical entities and reactions from different
sources as matching and aligning pathways at that level is still an
open research problem. As a result, graph searches can return
several similar but disconnected sub-networks that correspond to
the pathway data from different providers (though some physical
entities often refer to the same small molecule or protein reference
or controlled vocabulary).

	Parameters

	
	kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – graph query

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – source object’s URI/ID. Multiple source URIs/IDs
must be encoded as list of valid URI
source=[‘http://identifiers.org/uniprot/Q06609’,
‘http://identifiers.org/uniprot/Q549Z0’].

	target (str [https://docs.python.org/3/library/stdtypes.html#str]) – required for PATHSFROMTO graph query. target
URI/ID. Multiple target URIs must be encoded as list (see source
parameter).

	direction (str [https://docs.python.org/3/library/stdtypes.html#str]) – graph search direction in [BOTHSTREAM,
DOWNSTREAM, UPSTREAM] see _valid_directions attribute.

	limit (int [https://docs.python.org/3/library/functions.html#int]) – graph query search distance limit (default = 1).

	format (str [https://docs.python.org/3/library/stdtypes.html#str]) – output format. see _valid-format

	datasource (str [https://docs.python.org/3/library/stdtypes.html#str]) – datasource filter (same as for ‘search’).

	organism (str [https://docs.python.org/3/library/stdtypes.html#str]) – organism filter (same as for ‘search’).

	Returns

	By default, graph queries return a complete BioPAX
representation of the subnetwork matched by the algorithm.
Other output formats are available as specified by the optional
format parameter. Please be advised that some output format
choices might cause “no result found” error if the conversion
is not applicable for the BioPAX result (e.g., BINARY_SIF output
fails if there are no interactions, complexes, nor pathways
in the retrieved set).

>>> from bioservices import PathwayCommons
>>> pc2 = PathwayCommons(verbose=False)
>>> res = pc2.graph(source="http://identifiers.org/uniprot/P20908",
 kind="neighborhood", format="EXTENDED_BINARY_SIF")

	
search(q, page=0, datasource=None, organism=None, type=None)

	Text search in PathwayCommons using Lucene query syntax

Some of the parameters are BioPAX properties, others are composite
relationships.

All index fields are (case-sensitive): comment, ecnumber,
keyword, name, pathway, term, xrefdb, xrefid, dataSource, and organism.

The pathway field maps to all participants of pathways that contain
the keyword(s) in any of its text fields.

Finally, keyword is a transitive aggregate field that includes all
searchable keywords of that element and its child elements.

All searches can also be filtered by data source and organism.

It is also possible to restrict the domain class using the
‘type’ parameter.

This query can be used standalone or to retrieve starting points
for graph searches.

	Parameters

	
	q (str [https://docs.python.org/3/library/stdtypes.html#str]) – requires a keyword , name, external identifier, or a
Lucene query string.

	page (int [https://docs.python.org/3/library/functions.html#int]) – (N>=0, default is 0), search result page number.

	datasource (str [https://docs.python.org/3/library/stdtypes.html#str]) – filter by data source (use names or URIs of
pathway data sources or of any existing Provenance object). If
multiple data source values are specified, a union of hits from
specified sources is returned. datasource=[reactome,pid] returns
hits associated with Reactome or PID.

	organism (str [https://docs.python.org/3/library/stdtypes.html#str]) – The organism can be specified either by
official name, e.g. “homo sapiens” or by NCBI taxonomy id,
e.g. “9606”. Similar to data sources, if multiple organisms
are declared a union of all hits from specified organisms
is returned. For example organism=[9606, 10016] returns results
for both human and mice.

	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – BioPAX class filter. (e.g., ‘pathway’, ‘proteinreference’)

>>> from bioservices import PathwayCommons
>>> pc2 = PathwayCommons(vverbose=False)
>>> pc2.search("Q06609")
>>> pc2.search("brca2", type="proteinreference",
 organism="homo sapiens", datasource="pid")
>>> pc2.search("name:'col5a1'", type="proteinreference", organism=9606)
>>> pc2.search("a*", page=3)

Find the FGFR2 keyword:

pc2.search("FGFR2")

Find pathways by FGFR2 keyword in any index field.:

pc2.search("FGFR2", type="pathway")

Finds control interactions that contain the word binding but not
transcription in their indexed fields:

pc2.search("binding NOT transcription", type="control")

Find all interactions that directly or indirectly participate
in a pathway that has a keyword match for “immune” (Note the star after
immune):

pc.search(“pathway:immune*”, type=”conversion”)

Find all Reactome pathways:

pc.search("*", type="pathway", datasource="reactome")

	
top_pathways(query='*', datasource=None, organism=None)

	This command returns all top pathways

Pathways can be top or pathways that are neither
‘controlled’ nor ‘pathwayComponent’ of another process.

	param query

	a keyword, name, external identifier or lucene query
string like in ‘search’. Default is “*”

	param str datasource

	filter by data source (same as search)

	param str organism

	organism filter. 9606 for human.

	return

	dictionary with information about top pathways. Check the
“searchHit” key for information about “dataSource” for instance

>>> from bioservices import PathwayCommons
>>> pc2 = PathwayCommons(verbose=False)
>>> res = pc2.top_pathways()

https://www.pathwaycommons.org/pc2/top_pathways?q=TP53

	
traverse(uri, path)

	Provides XPath-like access to the PC.

The format of the path query is in the form:

[InitialClass]/[property1]:[classRestriction(optional)]/[property2]... A "*"

sign after the property instructs path accessor to transitively traverse
that property. For example, the following path accessor will traverse
through all physical entity components within a complex:

"Complex/component*/entityReference/xref:UnificationXref"

The following will list display names of all participants of
interactions, which are components (pathwayComponent) of a pathway
(note: pathwayOrder property, where same or other interactions can be
reached, is not considered here):

"Pathway/pathwayComponent:Interaction/participant*/displayName"

The optional parameter classRestriction allows to restrict/filter the
returned property values to a certain subclass of the range of that
property. In the first example above, this is used to get only the
Unification Xrefs. Path accessors can use all the official BioPAX
properties as well as additional derived classes and parameters in
paxtools such as inverse parameters and interfaces that represent
anonymous union classes in OWL. (See Paxtools documentation for more
details).

	Parameters

	
	uri (str [https://docs.python.org/3/library/stdtypes.html#str]) – a biopax element URI - specified similar to the ‘GET’
command. multiple IDs are allowed as a list of strings.

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – a BioPAX propery path in the form of
property1[:type1]/property2[:type2]; see above, inverse
properties, Paxtools,
org.biopax.paxtools.controller.PathAccessor.

See also

properties [http://www.pathwaycommons.org/pc2/#biopax_properties]

	Returns

	XML result that follows the Search Response XML Schema
(TraverseResponse type; pagination is disabled: returns all values at
once)

from bioservices import PathwayCommons
pc2 = PathwayCommons(verbose=False)
res = pc2.traverse(uri=['http://identifiers.org/uniprot/P38398','http://identifiers.org/uniprot/Q06609'], path="ProteinReference/organism")
res = pc2.traverse(uri="http://identifiers.org/uniprot/Q06609",
 path="ProteinReference/entityReferenceOf:Protein/name")
res = pc2.traverse("http://identifiers.org/uniprot/P38398",
 path="ProteinReference/entityReferenceOf:Protein")
res = pc2.traverse(uri=["http://identifiers.org/uniprot/P38398",
 "http://identifiers.org/taxonomy/9606"], path="Named/name")

8.24. PDB/PDBe modules

Interface to the PDB web Service (New API Jan 2021).

What is PDB ?

	URL

	http://www.rcsb.org/pdb/

	REST

	http://search.rcsb.org/#search-api

An Information Portal to Biological Macromolecular Structures

—PDB home page, Jan 2021

	
class PDB(verbose=False, cache=False)

	Interface to PDB [http://search.rcsb.org/] service (new API Jan 2021)

With the new API, one method called search() is
provided by PDB. To perform a search you need to define a query. Here is an
example

>>> from bioservices import PDB
>>> s = PDB()
>>> query = {"query":
... {"type": "terminal",
... "service": "text",
... "parameters": {
... "value": "thymidine kinase"
... }
... },
... "return_type": "entry"}
>>> res = s.search(query, return_type=return_type)

Note

as of December 2020, a new API has be set up by PDB.
some prevous functionalities such as return list of Ligand are not
supported anymore (Jan 2021). However, many more powerful searches as
available. I encourage everyone to look at the PDB page for complex
examples: http://search.rcsb.org/#examples

As mentionnaed above, the PDB service provide one method called search available in
search(). We will not cover all the power and
capability of this search function. User should refer to the official PDB help
for that. Yet, given examples from PDB should all work with this method.

When possible, we will add convenient aliases function in this class. For
now we have for example the get_current_ids() and
get_similarity_sequence() that users may find useful.

The main idea behind the PDB API is to create queries that can access to
different type of services. A query will need to at least two keys:

	query

	return_type

Consider this basic example that searches for the text thymidine kinase:

{
 "query": {
 "type": "terminal",
 "service": "text",
 "parameters": {
 "value": "thymidine kinase"
 }
 },
 "return_type": "entry"
}

Here the query is defined by a query and a return_type indeed. The
return type is a simple value such as entry. The query itself is
composed of 3 pairs of key/value. Here we have the type service and
parameters as defined below.

The query can have several fields:

	type: the clause type can be either terminal or group

	terminal: performs an atomic search operation, e.g. searches
for a particular value in a particular field.

	group: wraps other terminal or group nodes and is
used to combine multiple queries in a logical fashion.

	service:

	text: linguistic searches against textual annotations.

	sequence: uses MMSeq2 to perform sequence matching searches (blast-like).
following targets that are available:

	pdb_protein_sequence,

	pdb_dna_sequence,

	pdb_na_sequence

	seqmotif: performs short motif searches against nucleotide or protein
sequences using 3 different inputs:

	simple (e.g., CXCXXL)

	prosite (e.g., C-X-C-X(2)-[LIVMYFWC])

	regex (e.g., CXCX{2}[LIVMYFWC])

	structure: searches matching a global 3D shape of assemblies
or chains of a given entry (identified by PDB ID), in either strict
(strict_shape_match) or relaxed (relaxed_shape_match) modes

	strucmotif: Performs structural motif searches on all available PDB structures.

	chemical: queries of small-molecule constituents of PDB structures,
based on chemical formula and chemical structure. Queries for matching and similar
chemical structures can be performed using SMILES and InChI descriptors
as search targets.

	graph-strict: atom type, formal charge, bond order, atom and bond chirality,
aromatic assignment are used as matching criteria for this search type.

	graph-relaxed: atom type, formal charge and bond order are used as
matching criteria for this search type.

	graph-relaxed-stereo: atom type, formal charge, bond order, atom
and bond chirality are used as matching criteria for this search
type.

	fingerprint-similarity: Tanimoto similarity is used as the matching criteria

Concerning the return_type key, it can be one of :

	entry: a list of PDB IDs.

	assembly: list of PDB IDs appended with assembly IDs in the format of
a [pdb_id]-[assembly_id], corresponding to biological assemblies.

	polymer_entity: list of PDB IDs appended with entity IDs in the format
of a [pdb_id]_[entity_id], corresponding to polymeric molecular entities.

	non_polymer_entity: list of PDB IDs appended with entity IDs in the
format of a [pdb_id]_[entity_id], corresponding to non-polymeric entities (or ligands).

	polymer_instance: list of PDB IDs appended with asym IDs in the format
of a [pdb_id].[asym_id], corresponding to instances of certain polymeric
molecular entities, also known as chains.

Optional arguments

There are many optional arguments. Let us see a couple of them. Pagination can be
set (default is 10 entries) using the request_options (optional) key.
Consider this query example:

{
 "query": {
 "type": "terminal",
 "service": "text",
 "parameters": {
 "attribute": "rcsb_polymer_entity.formula_weight",
 "operator": "greater",
 "value": 500
 }
 },
 "request_options": {
 "pager": {
 "start": 0,
 "rows": 100
 }
 },
 "return_type": "polymer_entity"
}

Here, the query searches for the polymer_entity that have a formula weight
above 500. Withe request_options pager set to 100, we will get the first 100
hits.

To return all hits, set this field in the request_options:

"return_all_hits": true

Coming back at the first basic example, we can reuse it to illustrate how to
refine the search using attribute and operators:

{
 "query": {
 "type": "terminal",
 "service": "text",
 "parameters": {
 "value": "thymidine kinase",
 "attribute": "exptl.method",
 "operator": "exact_match",
 }
 },
 "return_type": "entry"
}

All valid combo of operators and attributes can be found
here: http://search.rcsb.org/search-attributes.html

For instance, in the example above only in, exact_match and exists can be
used with exptl.method attribute. This is not checked in bioservices.

Sorting is determined by the sort object in the request_options context.
It allows you to add one or more sorting conditions to control the order of
the search result hits. The sort operation is defined on a per field level, with
special field name for score to sort by score (the default)<

By default sorting is done in descending order (“desc”). The sort can be
reversed by setting direction property to “asc”. This example demonstrates how
to sort the search results by release date:

{
 "query": {
 "type": "terminal",
 "service": "text",
 "parameters": {
 "attribute": "struct.title",
 "operator": "contains_phrase",
 "value": ""hiv protease""
 }
 },
 "request_options": {
 "sort": [
 {
 "sort_by": "rcsb_accession_info.initial_release_date",
 "direction": "desc"
 }
]
 },
 "return_type": "entry"
}

Again, many more complex examples can be found on PDB page.

Constructor

	Parameters

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – prints informative messages (default is off)

	
get_current_ids()

	Get a list of all current PDB IDs.

	
get_similarity_sequence(seq)

	Search of seauence similarity search with protein sequence

seq = “VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKKVADALTAVAHVDDMPNAL”
results = p.get_similarity_sequence(seq)

	
search(query, request_options=None, request_info=None, return_type=None)

	search request represented as a JSON object.

This is the only function in PDB API. You should be able
to perform any valid PDB searches here (see the
bioservices.pdb.PDB documentation for details.
Note, however, that we have aliases methods in BioServices that will be
added on demand for common searches.

	Parameters

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – the search expression. Can be omitted if, instead of IDs retrieval,
facets or count operation should be performed. In this case the request must be
configured via the request_options context.

	request_options (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) controls various aspects of the search request
including pagination, sorting, scoring and faceting.

	request_info (str [https://docs.python.org/3/library/stdtypes.html#str]) – additional information about the query, e.g.
query_id. (optional)

	return_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – type of results to return.

	Returns

	json results

You must define a query as defined in the PDB web page. For example the
following query search for macromolecular PDB entities that share 90% sequence
identity with GTPase HRas protein from Gallus gallus (Chicken):

query = {
 "query": {
 "type": "terminal",
 "service": "sequence",
 "parameters": {
 "evalue_cutoff": 1,
 "identity_cutoff": 0.9,
 "target": "pdb_protein_sequence",
 "value": "MTEYKLVVVGAGGVGKSALTIQLIQNHFVDEYDPTIEDSYRKQVVIDGETCLLDILDTAGQEEYSAMRDQYMRTGEGFLCVFAINNTKSFEDIHQYREQIKRVKDSDDVPMVLVGNKCDLPARTVETRQAQDLARSYGIPYIETSAKTRQGVEDAFYTLVREIRQHKLRKLNPPDESGPGCMNCKCVIS"
 }
 },
 "request_options": {
 "scoring_strategy": "sequence"
 },
 "return_type": "polymer_entity"
}

What is important is that the dictionary called query contains 2
compulsary keys namely query and return_type. The two other optional
keys are request_options and return_info

You would then call the PDB search as follows:

from bioservices import PDB
p = PDB()
results = p.search(query)

Now, in BioServices, you can also decompose the query as follows:

query = {
 "type": "terminal",
 "service": "sequence",
 "parameters": {
 "evalue_cutoff": 1,
 "identity_cutoff": 0.9,
 "target": "pdb_protein_sequence",
 "value": "MTEYKLVVVGAGGVGKSALTIQLIQNHFVDEYDPTIEDSYRKQVVIDGETCLLDILDTAGQEEYSAMRDQYMRTGEGFLCVFAINNTKSFEDIHQYREQIKRVKDSDDVPMVLVGNKCDLPARTVETRQAQDLARSYGIPYIETSAKTRQGVEDAFYTLVREIRQHKLRKLNPPDESGPGCMNCKCVIS"
 }}
request_options = { "scoring_strategy": "sequence"}
return_type= "polymer_entity"

and then use PDB search again:

from bioservices import PDB
p = PDB()
results = p.search(query, request_options=request_options, return_type=return_type)

or even simpler for the Pythonic lovers:

results = p.search(**query)

Interface to the PDBe web Service.

What is PDBe ?

	URL

	https://www.ebi.ac.uk/pdbe/

	REST

	https://www.ebi.ac.uk/pdbe/api/doc/

PDBe is a founding member of the Worldwide Protein Data Bank which
collects, organises and disseminates data on biological macromolecular
structures. In collaboration with the other Worldwide Protein Data Bank (wwPDB)
partners, we work to collate, maintain and provide access to the global
repository of macromolecular structure models, the Protein Data Bank (PDB).

—PDBe home page, June 2020

	
class PDBe(verbose=False, cache=False)

	Interface to part of the PDBe [http://www.ebi.ac.uk/pdbe] service

>>> from bioservices import PDBe
>>> s = PDBe()
>>> res = s.get_file("1FBV", "pdb")

Constructor

	Parameters

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – prints informative messages (default is off)

	
get_assembly(query)

	Provides information for each assembly of a given PDB ID. T

This information is broken down at the entity level for each assembly. The
information given includes the molecule name, type and class, the chains where
the molecule occur, and the number of copies of each entity in the assembly.

	Parameters

	query – a 4-character PDB id code

p.get_assembly('1cbs')

	
get_binding_sites(query)

	Pprovides details on binding sites in the entry

STRUCT_SITE records in PDB files (or mmcif equivalent thereof), such as ligand,
residues in the site, description of the site, etc.

	Parameters

	query – a 4-character PDB id code

p.get_binding_sites('1cbs')

	
get_drugbank_annotation(query)

	This call provides DrugBank annotation of all ligands, i.e. ‘bound’

	Parameters

	query – a 4-character PDB id code

p.get_drugbank_annotation('5hht')

	
get_electron_density_statistics(query)

	This call details the statistics for electron density.

	Parameters

	query – a 4-character PDB id code

p.get_electron_density_statistics('1cbs')

	
get_experiment(query)

	Provides details of experiment(s) carried out in determining the structure of the entry.

Each experiment is described in a separate dictionary.
For X-ray diffraction, the description consists of resolution, spacegroup, cell
dimensions, R and Rfree, refinement program, etc.
For NMR, details of spectrometer, sample, spectra, refinement, etc. are
included.
For EM, details of specimen, imaging, acquisition, reconstruction, fitting etc.
are included.

	Parameters

	query – a 4-character PDB id code

p.get_experiment('1cbs')

	
get_files(query)

	Provides URLs and brief descriptions (labels) for PDB entry

Also, for mmcif files, biological assembly files, FASTA file for sequences,
SIFTS cross reference XML files, validation XML files, X-ray structure
factor file, NMR experimental constraints files, etc.

	Parameters

	query – a 4-character PDB id code

p.get_files('1cbs')

	
get_functional_annotation(query)

	Provides functional annotation of all ligands, i.e. ‘bound’

	Parameters

	query – a 4-character PDB id code

p.get_functional_annotation('1cbs')

	
get_ligand_monomers(query)

	Provides a a list of modelled instances of ligands,

ligands i.e. ‘bound’ molecules that are not waters.

	Parameters

	query – a 4-character PDB id code

p.get_ligand_monomers('1cbs')

	
get_modified_residues(query)

	Provides a list of modelled instances of modified amino acids or
nucleotides in protein, DNA or RNA chains.

	Parameters

	query – a 4-character PDB id code

p.get_modified_residues('4v5j')

	
get_molecules(query)

	Return details of molecules (or entities in mmcif-speak) modelled in the entry

This can be entity id, description, type, polymer-type (if applicable), number
of copies in the entry, sample preparation method, source organism(s)
(if applicable), etc.

	Parameters

	query – a 4-character PDB id code

p.get_molecules('1cbs')

	
get_mutated_residues(query)

	Provides a list of modelled instances of mutated amino acids or
nucleotides in protein, DNA or RNA chains.

	Parameters

	query – a 4-character PDB id code

p.get_mutated_residues('1bgj')

	
get_nmr_resources(query)

	This call provides URLs of available additional resources for NMR
entries. E.g., mapping between structure (PDB) and chemical shift (BMRB)
entries.
:param query: a 4-character PDB id code

p.get_nmr_resources('1cbs')

	
get_observed_ranges(query)

	
	Provides observed ranges, i.e., segments of structural coverage of
	polymeric molecues that are modelled fully or partly

	Parameters

	query – a 4-character PDB id code

p.get_observed_ranges('1cbs')

	
get_observed_ranges_in_pdb_chain(query, chain_id)

	
	Provides observed ranges, i.e., segments of structural coverage of
	polymeric molecules in a particular chain

	Parameters

	
	query – a 4-character PDB id code

	query – a PDB chain ID

p.get_observed_ranges_in_pdb_chain('1cbs', "A")

	
get_observed_residues_ratio(query)

	Provides the ratio of observed residues for each chain in each molecule

	The list of chains within an entity is sorted by observed_ratio (descending order),
	partial_ratio (ascending order), and number_residues (descending order).

	Parameters

	query – a 4-character PDB id code

p.get_observed_residues_ratio('1cbs')

	
get_related_dataset(query)

	Provides DOI’s for related raw experimental datasets

Includes diffraction image data, small-angle scattering data and
electron micrographs.

	Parameters

	query – a 4-character PDB id code

p.get_cofactor('5o8b')

	
get_related_publications(query)

	Return publications obtained from both EuroPMC and UniProt. T

These are articles which cite the primary citation of the entry, or
open-access articles which mention the entry id without explicitly citing the
primary citation of an entry.

	Parameters

	query – a 4-character PDB id code

p.get_related_publications('1cbs')

	
get_release_status(query)

	Provides status of a PDB entry (released, obsoleted, on-hold etc)
along with some other information such as authors, title, experimental method,
etc.

	Parameters

	query – a 4-character PDB id code

p.get_release_status('1cbs')

	
get_residue_listing(query)

	Provides lists all residues (modelled or otherwise) in the entry.

Except waters, along with details of the fraction of expected atoms modelled for
the residue and any alternate conformers.

	Parameters

	query – a 4-character PDB id code

p.get_residue_listing('1cbs')

	
get_residue_listing_in_pdb_chain(query, chain_id)

	Provides all residues (modelled or otherwise) in the entry

Except waters, along with details of the fraction of expected atoms
modelled for the residue and any alternate conformers.

	Parameters

	
	query – a 4-character PDB id code

	query – a PDB chain ID

p.get_residue_listing_in_pdb_chain('1cbs')

	
get_secondary_structure(query)

	Provides residue ranges of regular secondary structure

(alpha helices and beta strands) found in protein chains of the entry.
For strands, sheet id can be used to identify a beta sheet.

	Parameters

	query – a 4-character PDB id code

p.get_secondary_structure('1cbs')

	
get_summary(query)

	Returns summary of a PDB entry

This can be title of the entry, list of depositors, date of deposition,
date of release, date of latest revision, experimental method, list
of related entries in case split entries, etc.

	Parameters

	query – a 4-character PDB id code

p.get_summary('1cbs')
p.get_summary('1cbs,2kv8')
p.get_summary(['1cbs', '2kv8'])

8.25. PRIDE module

Interface to PRIDE web service

What is PRIDE ?

	URL

	http://www.ebi.ac.uk/pride/ws/archive/v2

The PRIDE PRoteomics IDEntifications database is a centralized,
standards compliant, public data repository for proteomics data,
including protein and peptide identifications, post-translational
modifications and supporting spectral evidence.

—From PRIDE web site, Jan 2015

	
class PRIDE(verbose=False, cache=False)

	Interface to the PRIDE [http://rest.ensembl.org] service

from bioservices import PRIDE
p = PRIDE()
p.get_peptide_evidence(projectAccession)

Changed in version 1.10.1: Due to new API:

	the method project_count was dropped.

	get_project_list was renamed in get_project_files

	get_assays, get_assay_count, get_assay_count_project_accession, get_assay_list were dropped in v2

	get_protein_list, get_protein_count, get_protein_count_assay, get_protein_list, get_protein_list_assay
replaced by get_protein_evidences method

	get_peptide_list_assay, get_peptide_count, get_peptide_list, get_peptide_list_sequence,
get_peptide_count_assay replaced by get_peptide_evidence.

Constructor

	Parameters

	
	verbose – set to False to prevent informative messages

	cache – set to True to use caching. Not recommended for
this service that evolves a lot

	
get_peptide_evidence(project_accession=None, assay_accession=None, protein_accession=None, peptide_evidence_accession=None, peptide_sequence=None, pageSize=100, page=0, sortDirection='DESC', sortConditions='projectAccession')

	Get all the peptide evidences for an specific protein evidence

	Parameters

	
	project_accession –

	assay_accession –

	protein_accession –

	peptide_evidence_accession –

	peptide_sequence –

	pageSize (int [https://docs.python.org/3/library/functions.html#int]) – how many results to return per page

	page (int [https://docs.python.org/3/library/functions.html#int]) – which page (starting from 0) of the result to return

	sortConditions (str [https://docs.python.org/3/library/stdtypes.html#str]) – default is submission_date but more fields
can be separated by comma and passed. Example: submission_date,project_title

	sortDirection (str [https://docs.python.org/3/library/stdtypes.html#str]) – the sorting order (ASC or DESC)

Retrieving data from project accession should be fast:

p.get_peptide_evidence(protein_accession="Q8IX30")

but other methods may be slow:

p.get_peptide_evidence(peptide_sequence="CQGSPGASKAMLSCNR")

	
get_project(identifier)

	Retrieve project information by accession

List of PRIDE Archive Projects. The following method do not allows
to perform search, for search functionality you will need to use
the search/projects. The result list is Paginated using the pageSize and page.

	Parameters

	identifier (str [https://docs.python.org/3/library/stdtypes.html#str]) – a valid PRIDE identifier e.g., PRD000001

	Returns

	if identifier is invalid, returns an emppty dictionary {}

>>> from bioservices import PRIDE
>>> p = PRIDE()
>>> res = p.get_project("PRD000001")
>>> res['title']
'COFRADIC proteome of unstimulated human blood platelets'

	
get_project_files(accession, pageSize=100, page=0, sortConditions=None, sortDirection='DESC', filters='')

	list projects or given criteria

	Parameters

	
	accession (str [https://docs.python.org/3/library/stdtypes.html#str]) – the accession number to look for

	pageSize (int [https://docs.python.org/3/library/functions.html#int]) – how many results to return per page

	page (int [https://docs.python.org/3/library/functions.html#int]) – which page (starting from 0) of the result to return

	sortConditions (str [https://docs.python.org/3/library/stdtypes.html#str]) – default is submission_date but more fields
can be separated by comma and passed. Example: submission_date,project_title

	sortDirection (str [https://docs.python.org/3/library/stdtypes.html#str]) – the sorting order (ASC or DESC)

	filters (str [https://docs.python.org/3/library/stdtypes.html#str]) – Parameters to filter the search results. The structure of
the filter is: field1==value1, field2==value2. Example accession==PRD000001

>>> p = PRIDE()
>>> results = p.get_project_files(accession="PRD000001", pageSize=10, page=1)

In v1.10.1 due to new PRIDE API, the method get_file_count was dropped. You can use:

len(results['_embedded']['files'])

Similarly the get_file_list method was dropped since all results are
stored in the output of this method

	
get_projects(pageSize=100, max_pages=1000000000.0)

	Get list of all projects

	
get_projects_count()

	

	
get_protein_evidences(project_accession=None, assay_accession=None, reported_accession=None, pageSize=100, page=0, sortDirection='DESC', sortConditions='projectAccession')

	Get all proteins evidence

	Parameters

	
	project_accession –

	assay_accession –

	reported_accession –

	pageSize (int [https://docs.python.org/3/library/functions.html#int]) – how many results to return per page

	page (int [https://docs.python.org/3/library/functions.html#int]) – which page (starting from 0) of the result to return

	sortConditions (str [https://docs.python.org/3/library/stdtypes.html#str]) – default is submission_date but more fields
can be separated by comma and passed. Example: submission_date,project_title

	sortDirection (str [https://docs.python.org/3/library/stdtypes.html#str]) – the sorting order (ASC or DESC)

p.get_protein_evidences()['_embedded']['proteinevidences']

	
get_stats(name=None)

	Retrieve statistics by Name

If you do not have the name, just type:

p.get_stats()

and then, e.g.,

p.get_stats("SUBMISSIONS_PER_YEAR")

8.26. PSICQUIC

Interface to the PSICQUIC web service

What is PSICQUIC ?

	URL

	http://code.google.com/p/psicquic/

	REST

	http://code.google.com/p/psicquic/wiki/PsicquicSpec_1_3_Rest

“PSICQUIC is an effort from the HUPO Proteomics Standard Initiative
(HUPO-PSI) to standardise the access to molecular interaction databases
programmatically. The PSICQUIC View web interface shows that PSICQUIC
provides access to 25 active service “

—Dec 2012

8.26.1. About queries

source: PSICQUIC View web page

The idea behind PSICQUIC is to retrieve information related to protein
interactions from various databases. Note that protein interactions does not
necesseraly mean protein-protein interactions. In order to be effective, the
query format has been standarised.

To do a search you can use the Molecular Interaction Query Language which is
based on Lucene’s syntax. Here are some rules

	Use OR or space ‘ ‘ to search for ANY of the terms in a field

	Use AND if you want to search for those interactions where ALL of your terms are found

	Use quotes (”) if you look for a specific phrase (group of terms that must
be searched together) or terms containing special characters that may otherwise
be interpreted by our query engine (eg. ‘:’ in a GO term)

	Use parenthesis for complex queries (e.g. ‘(XXX OR YYY) AND ZZZ’)

	
	Wildcards (*,?) can be used between letters in a term or at the end of terms to do fuzzy queries,
	but never at the beginning of a term.

	
	Optionally, you can prepend a symbol in front of your term.
	
	
	(plus): include this term. Equivalent to AND. e.g. +P12345

	
	(minus): do not include this term. Equivalent to NOT. e.g. -P12345

	Nothing in front of the term. Equivalent to OR. e.g. P12345

	Implicit fields are used when no field is specified (simple search). For
instance, if you put ‘P12345’ in the simple query box, this will mean the same
as identifier:P12345 OR pubid:P12345 OR pubauth:P12345 OR species:P12345 OR
type:P12345 OR detmethod:P12345 OR interaction_id:P12345

8.26.2. About the MITAB output

The output returned by a query contains a list of entries. Each entry is
formatted following the MITAB output.

Here below are listed the name of the field returned ordered as they would
appear in one entry. The first item is always idA whatever version of MITAB is
used. The version 25 of MITAB contains the first 15 fields in the table below.
Newer version may incude more fields but always include the 15 from MITAB 25 in
the same order. See the link from irefindex
about mitab [http://irefindex.uio.no/wiki/README_MITAB2.6_for_iRefIndex_8.0#What_each_line_represents]
for more information.

	Field Name

	Searches on

	Implicit*

	Example

	idA

	Identifier A

	No

	idA:P74565

	idB

	Identifier B

	No

	idB:P74565

	id

	Identifiers (A or B)

	No

	id:P74565

	alias

	Aliases (A or B)

	No

	alias:(KHDRBS1 HCK)

	identifiers

	Identifiers and Aliases undistinctively

	Yes

	identifier:P74565

	pubauth

	Publication 1st author(s)

	Yes

	pubauth:scott

	pubid

	Publication Identifier(s) OR

	Yes

	pubid:(10837477 12029088)

	taxidA

	Tax ID interactor A: the tax ID or
the species name

	No

	taxidA:mouse

	taxidB

	Tax ID interactor B: the tax ID or
species name

	No

	taxidB:9606

	species

	Species. Tax ID A or Tax ID B

	Yes

	species:human

	type

	Interaction type(s)

	Yes

	type:”physical interaction”

	detmethod

	Interaction Detection method(s)

	Yes

	detmethod:”two hybrid*”

	interaction_id

	Interaction identifier(s)

	Yes

	interaction_id:EBI-761050

	pbioroleA

	Biological role A

	Yes

	pbioroleA:ancillary

	pbioroleB

	Biological role B

	Yes

	pbioroleB:”MI:0684”

	pbiorole

	Biological roles (A or B)

	Yes

	pbiorole:enzyme

	ptypeA

	Interactor type A

	Yes

	ptypeA:protein

	ptypeB

	Interactor type B

	Yes

	ptypeB:”gene”

	ptype

	Interactor types (A or B)

	Yes

	pbiorole:”small molecule”

	pxrefA

	Interactor xref A (or Identifier A)

	Yes

	pxrefA:”GO:0003824”

	pxrefB

	Interactor xref B (or Identifier B)

	
	Yes pxrefB:”GO:0003824”

	pxref

	Interactor xrefs (A or B or Identifier
A or Identifier B)

	Yes

	pxref:”catalytic activity”

	xref

	Interaction xrefs (or Interaction
identifiers)

	Yes

	xref:”nuclear pore”

	annot

	Interaction annotations and tags

	Yes

	annot:”internally curated”

	udate

	Update date

	Yes

	udate:[20100101 TO 20120101]

	negative

	Negative interaction boolean

	Yes

	negative:true

	complex

	Complex expansion

	Yes

	complex:”spoke expanded”

	ftypeA

	Feature type of participant A

	Yes

	ftypeA:”sufficient to bind”

	ftypeB

	Feature type of participant B

	Yes

	ftypeB:mutation

	ftype

	Feature type of participant A or B

	Yes

	ftype:”binding site”

	pmethodA

	Participant identification method A

	Yes

	pmethodA:”western blot”

	pmethodB

	Participant identification method B

	Yes

	pmethodB:”sequence tag identification”

	pmethod

	
	Participant identification methods
	(A or B)

	Yes

	pmethod:immunostaining

	stc

	Stoichiometry (A or B). Only true or
false, just to be able to filter
interaction having stoichiometry available

	Yes

	stc:true

	param

	Interaction parameters. Only true or
false, just to be able to filter
interaction having parameters available

	Yes

	param:true

	
class PSICQUIC(verbose=True)

	Interface to the PSICQUIC [http://code.google.com/p/psicquic/] service

There are 2 interfaces to the PSICQUIC service (REST and WSDL) but we used
the REST only.

This service provides a common interface to more than 25 other services
related to protein. So, we won’t detail all the possiblity of this service.
Here is an example that consists of looking for interactors of the
protein ZAP70 within the IntAct database:

>>> from bioservices import *
>>> s = PSICQUIC()
>>> res = s.query("intact", "zap70")
>>> len(res) # there are 11 interactions found
11
>>> for x in res[1]:
... print(x)
uniprotkb:O95169
uniprotkb:P43403
intact:EBI-716238
intact:EBI-1211276
psi-mi:ndub8_human(display_long)|uniprotkb:NADH-ubiquinone oxidoreductase ASHI
.
.

Here we have a list of entries. There are 15 of them (depending on
the output parameter). The meaning of the entries is described on PSICQUIC
website: https://code.google.com/p/psicquic/wiki/MITAB25Format . In short:

	Unique identifier for interactor A

	Unique identifier for interactor B.

	Alternative identifier for interactor A, for example the official gene

	Alternative identifier for interactor B.

	Aliases for A, separated by “|

	Aliases for B.

	Interaction detection methods, taken from the corresponding PSI-MI

	First author surname(s) of the publication(s)

	Identifier of the publication

	NCBI Taxonomy identifier for interactor A.

	NCBI Taxonomy identifier for interactor B.

	Interaction types,

	Source databases and identifiers,

	Interaction identifier(s) i

	Confidence score. Denoted as scoreType:value.

Another example with reactome database:

res = s.query("reactome", "Q9Y266")

Warning

PSICQUIC gives access to 25 other services. We cannot create
a dedicated parsing for all of them. So, the ::query method returns
the raw data. Addition class may provide dedicated parsing in the
future.

See also

bioservices.biogrid.BioGRID

Constructor

	Parameters

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – print informative messages

>>> from bioservices import PSICQUIC
>>> s = PSICQUIC()

	
property activeDBs

	returns the active DBs only

	
convert(data, db=None)

	

	
convertAll(data)

	

	
property formats

	Returns the possible output formats

	
getInteractionCounter(query)

	Returns a dictionary with database as key and results as values

	Parameters

	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – a valid query

	Returns

	a dictionary which key as database and value as number of entries

Consider only the active database.

	
getName(data)

	

	
knownName(data)

	Scan all entries (MITAB) and returns simplified version

Each item in the input list of mitab entry
The output is made of 2 lists corresponding to
interactor A and B found in the mitab entries.

elements in the input list takes the following forms:

DB1:ID1|DB2:ID2
DB3:ID3

The | sign separates equivalent IDs from different databases.

We want to keep only one. The first known databae is kept. If in the list of DB:ID pairs no known
database is found, then we keep the first one whatsover.

known databases are those available in the uniprot mapping tools.

chembl and chebi IDs are kept unchanged.

	
mappingOneDB(data)

	

	
postCleaning(data, keep_only='HUMAN', remove_db=['chebi', 'chembl'], keep_self_loop=False, verbose=True)

	Remove entries with a None and keep only those with the keep pattern

	
postCleaningAll(data, keep_only='HUMAN', flatten=True, verbose=True)

	even more cleaing by ignoring score, db and interaction
len(set([(x[0],x[1]) for x in retnew]))

	
preCleaning(data)

	remove entries ehre IdA or IdB is set to “-”

	
print_status()

	Prints the services that are available

	Returns

	Nothing

The output is tabulated. The columns are:

	names

	active

	count

	version

	rest URL

	soap URL

	rest example

	restricted

See also

If you want the data into lists, see all attributes
starting with registry such as registry_names()

	
query(service, query, output='tab25', version='current', firstResult=None, maxResults=None)

	Send a query to a specific database

	Parameters

	
	service (str [https://docs.python.org/3/library/stdtypes.html#str]) – a registered service. See registry_names.

	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – a valid query. Can be * or a protein name.

	output (str [https://docs.python.org/3/library/stdtypes.html#str]) – a valid format. See s._formats

s.query("intact", "brca2", "tab27")
s.query("intact", "zap70", "xml25")
s.query("matrixdb", "*", "xml25")

This is the programmatic approach to this website:

http://www.ebi.ac.uk/Tools/webservices/psicquic/view/main.xhtml

Another example consist in accessing the string database for fetching
protein-protein interaction data of a particular model organism. Here we
restrict the query to 100 results:

s.query("string", "species:10090", firstResult=0, maxResults=100, output="tab25")

spaces are automatically converted

s.query(“biogrid”, “ZAP70 AND species:9606”)

Warning

AND must be in big caps. Some database are ore permissive
than other (e.g., intact accepts “and”). species must be a valid ID number. Again, some DB are more
permissive and may accept the name (e.g., human)

To obtain the number of interactions in intact for the human specy:

>>> len(p.query("intact", "species:9606"))

	
queryAll(query, databases=None, output='tab25', version='current', firstResult=None, maxResults=None)

	Same as query but runs on all active database

	Parameters

	databases (list [https://docs.python.org/3/library/stdtypes.html#list]) – database to query. Queries all active DB if not provided

	Returns

	dictionary where keys correspond to databases and values to the output of the query.

res = s.queryAll("ZAP70 AND species:9606")

	
read_registry()

	Reads and returns the active registry

	
property registry

	returns the registry of psicquic

	
property registry_actives

	returns active state of each service

	
property registry_counts

	returns number of entries in each service

	
property registry_names

	returns all services available (names)

	
property registry_restexamples

	retuns REST example for each service

	
property registry_restricted

	returns restricted status of services

	
property registry_resturls

	returns URL of REST services

	
property registry_soapurls

	returns URL of WSDL service

	
property registry_versions

	returns version of each service

8.27. Rhea

Interface to the Rhea web services

What is Rhea ?

	URL

	http://www.ebi.ac.uk/rhea/

	Citations

	See http://www.ebi.ac.uk/rhea/about.xhtml

Rhea is a reaction database, where all reaction participants (reactants
and products) are linked to the ChEBI database (Chemical Entities of
Biological Interest) which provides detailed information about structure,
formula and charge. Rhea provides built-in validations that ensure both
elemental and charge balance of the reactions… While the main focus of
Rhea is enzyme-catalysed reactions, other biochemical reactions are also
are included.

The database is extensively cross-referenced. Reactions are currently linked
to the EC list, KEGG and MetaCyc, and the reactions will be used in the
IntEnz database and in all relevant UniProtKB entries. Furthermore, the
reactions will also be used in the UniPathway database to generate
pathways and metabolic networks.

—from Rhea Home page, Dec 2012 (http://www.ebi.ac.uk/rhea/about.xhtml)

	
class Rhea(verbose=True, cache=False)

	Interface to the Rhea [http://www.ebi.ac.uk/rhea/rest/1.0/] service

You can search by compound name, ChEBI ID, reaction ID, cross reference
(e.g., EC number) or citation (author name, title, abstract text, publication ID).
You can use double quotes - to match an exact phrase - and the following
wildcards:

	? (question mark = one character),

	* (asterisk = several characters).

Searching for caffe* will find reactions with participants such as caffeine,
trans-caffeic acid or caffeoyl-CoA:

from bioservices import Rhea
r = Rhea()
response = r.search("caffe*")

Searching for a?e?o* will find reactions with participants such as acetoin,
acetone or adenosine.:

from bioservices import Rhea
r = Rhea()
response = r.search("a?e?o*")

The search() entry() methods require a list of valid columns.
By default all columns are used but you can restrict to only a few. Here is
the description of the columns:

rhea-id : reaction identifier (with prefix RHEA)
equation : textual description of the reaction equation
chebi : comma-separated list of ChEBI names used as reaction participants
chebi-id : comma-separated list of ChEBI identifiers used as reaction participants
ec : comma-separated list of EC numbers (with prefix EC)
uniprot : number of proteins (UniProtKB entries) annotated with the Rhea reaction
pubmed : comma-separated list of PubMed identifiers (without prefix)

and 5 cross-references:

reaction-xref(EcoCyc)
reaction-xref(MetaCyc)
reaction-xref(KEGG)
reaction-xref(Reactome)
reaction-xref(M-CSA)

Rhea constructor

	Parameters

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – True by default

>>> from bioservices import Rhea
>>> r = Rhea()

	
get_metabolites(rxn_id)

	Given a Rhea (http://www.rhea-db.org/) reaction id,
returns its participant metabolites as a dict: {metabolite: stoichiometry},

e.g. ‘2 H + 1 O2 = 1 H2O’ would be represented ad {‘H’: -2, ‘O2’: -1, ‘H2O’: 1}.

	Parameters

	rxn_id – Rhea reaction id

	Returns

	dict of participant metabolites.

	
query(query, columns=None, frmt='tsv', limit=None)

	Retrieve a concrete reaction for the given id in a given format

	Parameters

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – the entry to retrieve

	frmt (str [https://docs.python.org/3/library/stdtypes.html#str]) – the result format (tsv); only tsv accepted for now (Nov
2020).

	limit (int [https://docs.python.org/3/library/functions.html#int]) – maximum number of results to retrieve

	Returns

	dataframe

Retrieve Rhea reaction identifiers and equation text:

r.query("", columns="rhea-id,equation", limit=10)

Retrieve Rhea reactions with enzymes curated in UniProtKB (only first 10
entries):

r.query("uniprot:*", columns="rhea-id,equation", limit=10)

To retrieve a specific entry:

df = r.get_entry("rhea:10661")

Changed in version 1.8.0: (entry() method renamed in query() and no
more format required. Must be given in the entry name e.g.
query(“10281.rxn”) instead of entry(10281, format=”rxn”)
the option frmt is now related to the result format

	
search(query, columns=None, limit=None, frmt='tsv')

	Search for Rhea (mimics https://www.rhea-db.org/)

	Parameters

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – the search term using format parameter

	format (str [https://docs.python.org/3/library/stdtypes.html#str]) – the biopax2 or cmlreact format (default)

	Returns

	A pandas DataFrame.

>>> r = Rhea()
>>> df = r.search("caffeine")
>>> df = r.search("caffeine", columns='rhea-id,equation')

8.28. Reactome

Interface to the Reactome webs services

What is Reactome?

	URL

	http://www.reactome.org/ReactomeGWT/entrypoint.html

	Citation

	http://www.reactome.org/citation.html

	REST

	http://reactomews.oicr.on.ca:8080/ReactomeRESTfulAPI/RESTfulWS

“REACTOME is an open-source, open access, manually curated and peer-reviewed
pathway database. Pathway annotations are authored by expert biologists, in
collaboration with Reactome editorial staff and cross-referenced to many
bioinformatics databases. These include NCBI Entrez Gene, Ensembl and UniProt
databases, the UCSC and HapMap Genome Browsers, the KEGG Compound and ChEBI
small molecule databases, PubMed, and Gene Ontology. … “

—from Reactome web site

	
class Reactome(verbose=True, cache=False)

	
Todo

interactors, orthology, particiapnts, person,
query, refernces, schema

	
get_complex_subunits(identifier, excludeStructuresSpecifies=False)

	A list with the entities contained in a given complex

Retrieves the list of subunits that constitute any given complex.
In case the complex comprises other complexes, this method
recursively traverses the content returning each contained
PhysicalEntity. Contained complexes and entity sets can be
excluded setting the ‘excludeStructures’ optional parameter to ‘true’

	Parameters

	
	identifier – The complex for which subunits are requested

	excludeStructures – Specifies whether contained complexes
and entity sets are excluded in the response

r.get_complex_subunits("R-HSA-5674003")

	
get_complexes(resources, identifier)

	A list of complexes containing the pair (identifier, resource)

Retrieves the list of complexes that contain a given (identifier,
resource). The method deconstructs the complexes into all its
participants to do so.

	Parameters

	
	resource – The resource of the identifier for complexes are
requested (e.g. UniProt)

	identifier – The identifier for which complexes are requested

r.get_complexes(resources, identifier)
r.get_complexes("UniProt", "P43403")

	
get_discover(identifier)

	The schema.org for an Event in Reactome knowledgebase

For each event (reaction or pathway) this method generates a
json file representing the dataset object as defined by
schema.org (http). This is mainly used by search engines in
order to index the data

r.data_discover("R-HSA-446203")

	
get_diseases()

	list of diseases objects

	
get_diseases_doid()

	retrieves the list of disease DOIDs annotated in Reactome

return: dictionary with DOID contained in the values()

	
get_entity_componentOf(identifier)

	A list of larger structures containing the entity

Retrieves the list of structures (Complexes and Sets) that
include the given entity as their component. It should be
mentioned that the list includes only simplified entries
(type, names, ids) and not full information about each item.

r.get_entity_componentOf("R-HSA-199420")

	
get_entity_otherForms(identifier)

	All other forms of PhysicalEntity

Retrieves a list containing all other forms of the given
PhysicalEntity. These other forms are PhysicalEntities that
share the same ReferenceEntity identifier, e.g. PTEN
H93R[R-HSA-2318524] and PTEN C124R[R-HSA-2317439] are two
forms of PTEN.

r.get_entity_otherForms("R-HSA-199420")

	
get_event_ancestors(identifier)

	The ancestors of a given event

The Reactome definition of events includes pathways and reactions.
Although events are organised in a hierarchical structure, a single
event can be in more than one location, i.e. a reaction can take
part in different pathways while, in the same way, a sub-pathway
can take part in many pathways. Therefore, this method retrieves
a list of all possible paths from the requested event to the top
level pathway(s).

	Parameters

	identifier – The event for which the ancestors are requested

r.get_event_ancestors("R-HSA-5673001")

	
get_eventsHierarchy(species)

	The full event hierarchy for a given species

Events (pathways and reactions) in Reactome are organised in a
hierarchical structure for every species. By following all
‘hasEvent’ relationships, this method retrieves the full event
hierarchy for any given species. The result is a list of tree
structures, one for each TopLevelPathway. Every event in these trees is
represented by a PathwayBrowserNode. The latter contains the stable identifier,
the name, the species, the url, the type, and the diagram of the particular
event.

	Parameters

	species – Allowed species filter: SpeciesName (eg: Homo sapiens)
SpeciesTaxId (eg: 9606)

r.get_eventsHierarchy(9606)

	
get_exporter_diagram(identifier, ext='png', quality=5, diagramProfile='Modern', analysisProfile='Standard', filename=None)

	Export a given pathway diagram to raster file

This method accepts identifiers for Event class instances.
When a diagrammed pathway is provided, the diagram is exported
to the specified format. When a subpathway is provided, the
diagram for the parent is exported and the events that are part
of the subpathways are selected. When a reaction is provided,
the diagram containing the reaction is exported and the reaction
is selected.

	Parameters

	
	identifier – Event identifier (it can be a pathway with
diagram, a subpathway or a reaction)

	ext – File extension (defines the image format) in png,
jpeg, jpg, svg, gif

	quality – Result image quality between [1 - 10]. It
defines the quality of the final image (Default 5)

	flg – not implemented

	sel – not implemented

	diagramProfile – Diagram Color Profile

	token – not implemented

	analysisProfile – Analysis Color Profile

	expColumn – not implemented

	filename – if given, save the results in the provided filename

	return: raw data if filename parameter is not set. Otherwise, the data
	is saved in the filename and the function returns None

	
get_exporter_fireworks()

	

	
get_exporter_reaction()

	

	
get_exporter_sbml(identifier)

	Export given Pathway to SBML

	Parameters

	identifier – DbId or StId of the requested database object

r.exporter_sbml("R-HSA-68616")

	
get_interactors_psicquic_molecule_details()

	Retrieve clustered interaction, sorted by score, of a given accession by resource.

	
get_interactors_psicquic_molecule_summary()

	Retrieve a summary of a given accession by resource

	
get_interactors_psicquic_resources()

	Retrieve a list of all Psicquic Registries services

	
get_interactors_static_molecule_details()

	Retrieve a detailed interaction information of a given accession

	
get_interactors_static_molecule_pathways()

	Retrieve a list of lower level pathways where the interacting molecules can be found

	
get_interactors_static_molecule_summary()

	Retrieve a summary of a given accession

	
get_mapping_identifier_pathways(resource, identifier)

	

	
get_mapping_identifier_reactions(resource, identifier)

	

	
get_pathway_containedEvents(identifier)

	All the events contained in the given event

Events are the building blocks used in Reactome to represent
all biological processes, and they include pathways and reactions.
Typically, an event can contain other events. For example, a
pathway can contain smaller pathways and reactions. This method
recursively retrieves all the events contained in any given event.

res = r.get_pathway_containedEvents("R-HSA-5673001")

	
get_pathway_containedEvents_by_attribute(identifier, attribute)

	A single property for each event contained in the given event

Events are the building blocks used in Reactome to represent all
biological processes, and they include pathways and reactions.
Typically, an event can contain other events. For example, a
pathway can contain smaller pathways (subpathways) and reactions.
This method recursively retrieves a single attribute for each of
the events contained in the given event.

	Parameters

	
	identifier – The event for which the contained events are requested

	attribute – Attrubute to be filtered

r.get_pathway_containedEvents_by_attribute("R-HSA-5673001", "stId")

	
get_pathways_low_diagram_entity(identifier)

	A list of lower level pathways with diagram containing
a given entity or event

This method traverses the event hierarchy and retrieves the
list of all lower level pathways that have a diagram and
contain the given PhysicalEntity or Event.

	Parameters

	
	identifier – The entity that has to be present in the pathways

	species – The species for which the pathways are requested.
Taxonomy identifier (eg: 9606) or species name (eg: ‘Homo sapiens’)

r.get_pathways_low_diagram_entity("R-HSA-199420")

	
get_pathways_low_diagram_entity_allForms(identifier)

	r.get_pathways_low_diagram_entity_allForms("R-HSA-199420")

	
get_pathways_low_entity(identifier)

	A list of lower level pathways containing a given entity or event

This method traverses the event hierarchy and retrieves the
list of all lower level pathways that contain the given
PhysicalEntity or Event.

r.get_pathways_low_entity("R-HSA-199420")

	
get_pathways_low_entity_allForms(identifier)

	A list of lower level pathways containing any form of a given entity

This method traverses the event hierarchy and retrieves the list of all
lower level pathways that contain the given PhysicalEntity in any of
its variant forms. These variant forms include for example different
post-translationally modified versions of a single protein, or the
same chemical in different compartments.

r.get_pathways_low_entity_allForms("R-HSA-199420")

	
get_pathways_top(species)

	

	
get_references(identifier)

	All referenceEntities for a given identifier

Retrieves a list containing all the reference entities for a given
identifier.

r.get_references(15377)

	
get_species_all()

	the list of all species in Reactome

	
get_species_main()

	the list of main species in Reactome

r.get_species_main()

	
property name

	

	
search_facet()

	A list of facets corresponding to the whole Reactome search data

This method retrieves faceting information on the whole Reactome search data.

	
search_facet_query(query)

	A list of facets corresponding to a specific query

This method retrieves faceting information on a specific query

	
search_query(query)

	Queries Solr against the Reactome knowledgebase

This method performs a Solr query on the Reactome knowledgebase.
Results can be provided in a paginated format.

	
search_spellcheck(query)

	Spell-check suggestions for a given query

This method retrieves a list of spell-check suggestions
for a given search term.

	
search_suggest(query)

	Autosuggestions for a given query

This method retrieves a list of suggestions for a given search term.

>>> r.http_get("search/suggest?query=apopt")
['apoptosis', 'apoptosome', 'apoptosome-mediated', 'apoptotic']

	
property version

	

8.29. Readseq

This module provides a class Seqret to access to Seqret WS.

What is Seqret ?

	URL

	http://www.ebi.ac.uk/Tools/services/rest/seqret/

	Service

	

	Citations

	http://www.ncbi.nlm.nih.gov/pubmed/18428689

EMBOSS seqret reads and converts biosequences between a selection of common
biological sequence formats, including EMBL, GenBank and fasta sequence
formats.

Seqret homepage – Sep 2017

	
class Seqret(verbose=True)

	Interface to the Seqret [http://www.ebi.ac.uk/readseq] service

>>> from bioservices import *
>>> s = Seqret()

The ReadSeq service was replaced by #the Seqret services (2015).

Changed in version 0.15.

Constructor

	Parameters

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
get_parameter_details(parameterId)

	Get details of a specific parameter.

	Parameters

	parameter (str [https://docs.python.org/3/library/stdtypes.html#str]) – identifier/name of the parameter to fetch details of.

	Returns

	a data structure describing the parameter and its values.

rs = ReadSeq()
print(rs.get_parameter_details("stype"))

	
get_parameters()

	Get a list of the parameter names.

	Returns

	a list of strings giving the names of the parameters.

	
get_result(jobid, result_type='out')

	Get the result of a job of the specified type.

	Parameters

	
	jobid (str [https://docs.python.org/3/library/stdtypes.html#str]) – job identifier.

	parameters – optional list of wsRawOutputParameter used to
provide additional parameters for derived result types.

	
get_result_types(jobid)

	Get the available result types for a finished job.

	Parameters

	jobid (str [https://docs.python.org/3/library/stdtypes.html#str]) – job identifier.

	Returns

	a list of wsResultType data structures describing the available result types.

	
get_status(jobid=None)

	Get the status of a submitted job.

	Parameters

	jobid (str [https://docs.python.org/3/library/stdtypes.html#str]) – job identifier.

	Returns

	string containing the status.

The values for the status are:

	RUNNING: the job is currently being processed.

	FINISHED: job has finished, and the results can then be retrieved.

	ERROR: an error occurred attempting to get the job status.

	FAILURE: the job failed.

	NOT_FOUND: the job cannot be found.

	
property parameters

	Get list of parameter names

	
run(email, title, **kargs)

	Submit a job to the service.

	Parameters

	
	email (str [https://docs.python.org/3/library/stdtypes.html#str]) – user e-mail address.

	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – job title.

	params – parameters for the tool as returned by get_parameter_details().

	Returns

	string containing the job identifier (jobId).

Deprecated (olf readseq service):

Format Name Value
Auto-detected 0
EMBL 4
GenBank 2
Fasta(Pearson) 8
Clustal/ALN 22
ACEDB 25
BLAST 20
DNAStrider 6
FlatFeat/FFF 23
GCG 5
GFF 24
IG/Stanford 1
MSF 15
NBRF 3
PAUP/NEXUS 17
Phylip(Phylip4) 12
Phylip3.2 11
PIR/CODATA 14
Plain/Raw 13
SCF 21
XML 19

As output, you also have

Pretty 18

s = readseq.Seqret()
jobid = s.run("cokelaer@test.co.uk", "test", sequence=fasta, inputformat=8,
 outputformat=2)
genbank = s.get_result(s._jobid)

8.30. UniChem

This module provides a class UniChem

What is UniChem

	URL

	https://www.ebi.ac.uk/unichem/info/webservices

	REST

	https://www.ebi.ac.uk/unichem/rest

“UniChem is a ‘Unified Chemical Identifier’ system, designed to assist
in the rapid cross-referencing of chemical structures, and their identifiers,
between databases (read more). “

—From UniChem web page June 2013

	
class UniChem(verbose=False, cache=False)

	Interface to the UniChem [https://www.ebi.ac.uk/unichem/] service

>>> from bioservices import UniChem
>>> u = UniChem()

There are lots of sources such as Chembl, Chebi, etc. You will probably need the
identifiers of those sources. You can get all information about a source using
these methods:

Get information about a source
u.get_source_info_by_name('chembl')
u.get_source_info_by_id(10)
u.get_id_from_name('chembl')
u.get_all_src_ids()

but for developers, everything is contained in the source_ids dictionary.

The first important method provided by Unichem API is the get_compounds().
For example, you can request all compounds related to the CHEMBL12 identifier
from ChEMBL using:

res = u.get_compounds('CHEMBL12', 'chembl')
compounds = res['compounds'][0]

Note that the second argument is ‘chembl’ and lower/upper cases is important.
All names are stored in source_ids together with their identifiers.

You can use also get_id_from_name() and get_name_from_id` if needed.

Legacy methods are available:

get_compound_ids_from_src_id –> use get_compounds()
get_src_compound_ids_from_inchikey –> replaced by get_compounds()
get_all_src_ids() –> uses new API
get_src_compound_ids_all_from_inchikey –> get_source_by_inchikey()
get_verbose_src_compound_ids_from_inchikey –> get_sources_by_inchikey_verbose()
get_structure –> uses new API get_compounds() and bioservices code
get_structure_all –> dropped
get_src_compound_id_url –> dropped. One can use the get_compounds()
get_src_compound_ids_all_from_obsolete –> removed

get_src_compound_ids_from_src_compound_id –> removed; was obsolet
get_src_compound_ids_all_from_src_compound_id –> remoed was already obsolet
get_all_compound_ids_from_all_src_id –> removed. no more API
get_mapping –> removed. no more API
get_auxiliary_mappings –> removed. no more API

Most old functions can be replaced by a syntax such as:

res = u.get_compound('CHEMBL12', 'chembl')
res['compounds'][0]

Constructor UniChem

	Parameters

	verbose – set to False to prevent informative messages

	
get_all_src_ids()

	Obtain all src_ids of sources available in UniChem

	Returns

	list of ‘src_id’s.

uni.get_all_src_ids()

	
get_compounds(compound, source_type)

	Get matched compounds information

	Parameters

	
	compound (str [https://docs.python.org/3/library/stdtypes.html#str]) – InChI, InChIKey, Name, UCI or Compound Source ID

	source_type – uci, inchi, inchikey, sourceID (e.g. chembl)

	sourceID (str [https://docs.python.org/3/library/stdtypes.html#str]) – ID for the source assigned in UniChem when the type is “sourceID”

	Returns

	a list of matched compounds and their assigned sources

A legacy function allows you to retrieve a compound from its inchikey:

u.get_sources_by_inchikey('GZUITABIAKMVPG-UHFFFAOYSA-N')

However, this new function is faster presumably and allows you to do the same:

res = u.get_compounds('GZUITABIAKMVPG-UHFFFAOYSA-N', 'inchikey')
res['compounds']

You can get the first element, from which inchi, sources, standardInchikey, uci can be extracted.
The sources key contains all compound identifiers for each source:

res['compounds'][0]['uci']
res['compounds'][0]['sources']

Looks like there is always a single element in res[‘compounds’] but since it is a list,
you must access to first element (unique) using [0] syntax.

	
get_connectivity(compound, source_type)

	Fetch multiple source data sets for a given compound
with common connectivity to a given id on the database
source, InChI, InChIkey or UCI

	Parameters

	
	compound (str [https://docs.python.org/3/library/stdtypes.html#str]) – InChI, InChIKey, Name, UCI or Compound Source ID (e.g. chembl)

	source_type – uci, inchi, inchikey, sourceID

The returned dictionary contains 5 keys:

	response: service response (‘Success’ if everything is right)

	searchedCompound: the summary in terms of inchi, standardInchikey and uci

	
	sources: a dictionary with e.g. compoundID and name of the source.
	A ‘comparison’ dictionary is also provided.

	totalCompounds: number of searchedCompound entries

	totalSources: number of sources entries

	
get_id_from_name(name)

	Return the ID a a source given its name.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – a valid database name (e.g., chembl)

u.get_id_from_name("chembl")

	
get_images(uci, filename=None)

	Return / create compound image

	Parameters

	
	uci – the UCI of the compound

	filename – optional file name to save the SVG+XML output

	Returns

	the SVG+XML string

(Source code)

	
get_inchi_from_inchikey(inchikey)

	Get a list of inchis given a valid inchikey.

	Parameters

	inchikey – InChI Key to search. Unlike the rest API, you can also provide a list.

	Returns

	a list of inchis matching the InChI Key provided. If input is a list, a
dictionary is returned where keys are the inchikey input lists.

from bioservices import UniChem
u = UniChem()
res = u.get_inchi("AAOVKJBEBIDNHE-UHFFFAOYSA-N")

Note

this is a legacy function. introduced in v1.9 after unichem API update

	
get_source_info_by_id(ID)

	

	
get_source_info_by_name(src_name)

	Description: Obtain all information on a source by querying with a source id

	Parameters

	src_name (int [https://docs.python.org/3/library/functions.html#int]) – valid identifiers can be found in source_ids e.g.
chebi, chembl)

	Returns

	dictionary (or list of dictionaries) with following keys:

	UCICount: number of entries

	baseIdUrl: URL of the source

	created: date of creation

	description: a description of the content of the source

	lastUpdated: last date of the update

	name: the unique name for the source in UniChem, always lower case

	nameLabel: A name for the source suitable for use as a ‘label’ for the source

	nameLong: the full name of the source, as defined by the source

	private: is it private or not ?

	sourceID: the src_id for this source

	srcDetails: details about the source

	srcReleaseDate: release date of the source database

	srcReleaseNumber: release number of the source

	srcUrl: src_url (the main home page of the source)

	updateComments: possible updates from this source

>>> res = get_source_by_name("chebi")

	
get_sources()

	Returns all information about all sources used in Unichem

from bioservices import UniChem
u = UniChem()
res = u.get_sources_information()
res['sources']

	
get_sources_by_inchikey(inchikey)

	Get sources by inchikey

	Parameters

	inchikey – InChI Key to search. Unlike the rest API, you can also provide a list.

	Returns

	A list of sources for the provided InChIKey if input is a single string.
a dictionary with keys as inchikey if input is a list.

Note

this is a legacy function. introduced in v1.9 after unichem API update

	
get_sources_by_inchikey_verbose(inchikey)

	Get sources by inchikey

	Parameters

	inchikey – InChI Key to search. Unlike the rest API, you can also provide a list.

	Returns

	A list of sources for the provided InChIKey if input is a single string.
a dictionary with keys as inchikey if input is a list.

Note

this is a legacy function. introduced in v1.9 after unichem API update

	
get_structure(compound_id, src_id)

	Obtain structure(s) CURRENTLY assigned to a query src_compound_id.

	Parameters

	
	compound_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – a valid compound identifier

	src_id (int [https://docs.python.org/3/library/functions.html#int]) – corresponding database identifier (name or id).

	Returns

	dictionary with ‘standardinchi’ and ‘standardinchikey’ keys

>>> uni.get_structure("CHEMBL12", "chembl")

8.31. UniProt

Interface to some part of the UniProt web service

What is UniProt ?

	URL

	http://www.uniprot.org

	Citation

	

“The Universal Protein Resource (UniProt) is a comprehensive resource for protein
sequence and annotation data. The UniProt databases are the UniProt
Knowledgebase (UniProtKB), the UniProt Reference Clusters (UniRef), and the
UniProt Archive (UniParc). The UniProt Metagenomic and Environmental Sequences
(UniMES) database is a repository specifically developed for metagenomic and
environmental data.”

—From Uniprot web site (help/about) , Dec 2012

	
class UniProt(verbose=False, cache=False)

	Interface to the UniProt [http://www.uniprot.org] service

>>> from bioservices import UniProt
>>> u = UniProt(verbose=False)
>>> u.mapping("UniProtKB_AC-ID", "KEGG", query='P43403')
defaultdict(<type 'list'>, {'P43403': ['hsa:7535']})
>>> res = u.search("P43403")

Returns sequence on the ZAP70_HUMAN accession Id
>>> sequence = u.search("ZAP70_HUMAN", columns="sequence")

Changed in version 1.10: Uniprot update its service in June 2022. Changes were made in the bioservices
API with small changes. User API is more or less the same. Main issues that may
be faced are related to change of output column names. Please see the
_legacy_names for corresponding changes.

Some notes about searches. The and and or are now upper cases.
The organism and taxonomy fields are now organism_id and taxonomy_id

Constructor

	Parameters

	
	verbose – set to False to prevent informative messages

	cache – set to True to cache request

	
get_df(entries, nChunk=100, organism=None, limit=10, columns=None, progress=False)

	Given a list of uniprot entries, this method returns a dataframe with all possible columns

	Parameters

	
	entries – list of valid entry name. if list is too large (about
>200), you need to split the list

	chunk –

	limit – limit number of entries per identifier to 10. You can
set it to None to keep all entries but this will be very slow

	Returns

	dataframe with indices being the uniprot id (e.g. DIG1_YEAST)

To get about 100 columns related to the accession P62988, type:

df = u.get_df(‘P62988’)

Note that you may preceed the accesion by the keyword **sec_acc) to access secondary
accessions numbers:

df = u.get_df('sec_acc:P62988')

	
get_fasta(uniprot_id)

	Returns FASTA string given a valid identifier

	Parameters

	uniprot_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – a valid identifier (e.g. P12345)

This is just an alias to retrieve() when setting the format to ‘fasta’.
Method kept for legacy.

	
mapping(fr='UniProtKB_AC-ID', to='KEGG', query='P13368', polling_interval_seconds=3, max_waiting_time=100, progress=True)

	This is an interface to the UniProt mapping service

	Parameters

	
	fr – the source database identifier. See valid_mapping.

	to – the targetted database identifier. See valid_mapping.

	query – a string containing one or more IDs separated by a comma
It can also be a list of strings.

	polling_interval_seconds – the number of seconds between each status check of the current job

	max_waiting_time – the maximum number of seconds to wait for the final answer.

	Returns

	a dictionary with two possible keys. The first one is ‘results’
with the from / to answers and the second one ‘failedIds’ with Ids that were not found

>>> u.mapping("UniProtKB_AC-ID", "KEGG", 'P43403')
{'results': [{'from': 'P43403', 'to': 'hsa:7535'}]}

The output is a dictionary. Identifiers that were not found are stored in the keys
‘failedIds’. Succesful queries are stored in the ‘results’ key that is a list
of dictionaries with two keys set to ‘from’ and ‘to’. The ‘from’ key should be in your input list.
The ‘to’ key is the result. Here we have the KEGG identifier recognised by its prefix ‘hsa:’, which is for human.
Sometimes the output (‘to’) it is more complicated. Consider the following example:

u.mapping("UniParc", "UniProtKB", 'UPI0000000001,UPI0000000002')

You will see that the UniParc results is more complex than just an identifier.

See valid_mapping attribute for list of valid mapping identifiers.

Note that according to Uniprot (June 2022), there are various limits on ID Mapping Job Submission:

	Limit

	Details

	100,000

	Total number of ids allowed in comma separated param ids in /idmapping/run api

	500,000

	Total number of “mapped to” ids allowed

	100,000

	Total number of “mapped to” ids allowed to be enriched by UniProt data

	10,000

	Total number of “mapped to” ids allowed with filtering

Changed in version 1.1.1: to return a dictionary instaed of a list

Changed in version 1.1.2: the values for each key is now made of a list
instead of strings so as to store more than one values.

Changed in version 1.2.0: input query can also be a list of strings
instead of just a string

Changed in version 1.3.1: use http_post instead of http_get. This is 3 times
faster and allows queries with more than 600 entries in one go.

Changed in version 1.10.0: new API due to uniprot website update

Changed in version 1.11.0: implement batch to prevent limit of 25 results.

	
quick_search(query, limit=1)

	a specialised version of search()

This is equivalent to:

u = uniprot.UniProt()
u.search(query, frmt='tsv', sort="score", limit=1)

	Returns

	a dictionary.

	
retrieve(uniprot_id, frmt='json', database='uniprot', include=False)

	Search for a uniprot ID in UniProtKB database

	Parameters

	
	uniprot (str [https://docs.python.org/3/library/stdtypes.html#str]) – a valid UniProtKB ID, or uniref, uniparc or taxonomy.

	frmt (str [https://docs.python.org/3/library/stdtypes.html#str]) – expected output format amongst xml, txt, fasta, gff, rdf

	database (str [https://docs.python.org/3/library/stdtypes.html#str]) – database name in (uniprot, uniparc, uniref, taxonomy)

	include (bool [https://docs.python.org/3/library/functions.html#bool]) – include data with RDF format.

	Returns

	if the parameter uniprot_id is string, the output will be a a list of identifiers is provided, the output is also a list
otherwise, a string. The content of the string of items in the list
depends on the value of frmt.

>>> u = UniProt()
>>> res = u.retrieve("P09958", frmt="txt")
>>> fasta = u.retrieve(['P29317', 'Q5BKX8', 'Q8TCD6'], frmt='fasta')
>>> print(fasta[0])

Changed in version 1.10: the xml format is now returned as raw XML. It is not
interpreted anymore. The RDF has now an additional option to include data
from referenced data sets directly in the returned data (set include=True parameter).
Default output format is now set to json.

	
search(query, frmt='tsv', columns=None, include_isoforms=False, sort='score', compress=False, limit=None, size=25, database='uniprotkb', progress=True)

	Provide some interface to the uniprot search interface.

	Parameters

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – query must be a valid uniprot query.
See https://www.uniprot.org/help/query-fields and examples below

	frmt (str [https://docs.python.org/3/library/stdtypes.html#str]) – a valid format amongst xlsx, fasta, gff,
tsv and json. OTher format are not available within bioservices (rss, obo, rdf, xml)
(default is tsv)

	columns (str [https://docs.python.org/3/library/stdtypes.html#str]) – comma-separated list of values. Works only if fomat
is tsv or xlsx. For UnitProtKB, some possible columns are:
id, entry name, length, organism.
See also valid_mapping
for the full list of column keywords.

	include_isoform (bool [https://docs.python.org/3/library/functions.html#bool]) – include isoform sequences when the frmt
parameter is fasta. Include description when frmt is rdf.

	sort (str [https://docs.python.org/3/library/stdtypes.html#str]) – by score by default. Set to None to bypass this behaviour

	compress (bool [https://docs.python.org/3/library/functions.html#bool]) – gzip the results

	limit (int [https://docs.python.org/3/library/functions.html#int]) – Stops the download of results once this limit is crossed.
if size is 25 and limit is set to 30, 25+25 results will be returned though.
users need to do a post filtering.

	size (int [https://docs.python.org/3/library/functions.html#int]) – chunk of results (25 by default on uniprot website).

	Returns

	depends on the value of frmt. Uniprot API returns all results in several
pages with size elements per page. If frmt is set to xlsx, output is a list of
excel-like page with size per item. If frmt is set to tsv, bioservices concatenate
all pages in a single string. Similarly for gff, fasta or json, bioservices concatenates
all pages in a single variable (txt or dictionary depending on the requested format).

To obtain the list of uniprot ID returned by the search of zap70 can be
retrieved as follows:

>>> u.search('zap70+AND+organism_id:9606')
>>> u.search("zap70+AND+taxonomy_id:9606", frmt="tsv", limit=3,
... columns="entry_name,length,id, gene_names")
Entry name Length Entry Gene names
CBLB_HUMAN 982 Q13191 CBLB RNF56 Nbla00127
CBL_HUMAN 906 P22681 CBL CBL2 RNF55
CD3Z_HUMAN 164 P20963 CD247 CD3Z T3Z TCRZ

other examples:

>>> u.search("ZAP70+AND+organism_id:9606", limit=3, columns="id,xref_pdb")

You can also do a search on several keywords. This is especially useful
if you have a list of known entry names.:

>>> u.search("ZAP70_HUMAN+OR+CBL_HUMAN", frmt="tsv", limit=3,
... columns="entry name,length,id, genes")
Entry name Length Entry Gene names

Finally, note that when you search for a query, you may have several hits:

>>> u.search("P12345)

including the ID P12345 but also related entries. If you
need only the entry that perfectly match the query, use:

>>> u.search("accession:P12345")

This was provided from a user issue that was solved here:
https://github.com/cokelaer/bioservices/issues/122

Warning

some columns although valid may not return anything, not even in
the header: ‘score’, ‘taxonomy’, ‘tools’. this is a uniprot feature,
not bioservices.

Changed in version 1.10: Due to uniprot API changes in June 2022:

	parameter ‘include’ is now named ‘include_isoform

	default parameter ‘tab’ is now ‘tsv’ but does not change the results

Changed in version 1.11:

	removed the offset argument

	add size parameter and keep limit parameter

	add progress bar option (True by default)

	drop frmt in : rdf, obo, xml, html

	
uniref(query)

	Calls UniRef service

This is an alias to retrieve()

>>> u = UniProt()
>>> u.uniref("Q03063")

Another example from https://github.com/cokelaer/bioservices/issues/121
is the combination of uniprot and uniref filters:

u.uniref("uniprot:(ec:1.1.1.282 taxonomy_name:bacteria reviewed:true)")

Changed in version 1.10: due to uniprot API changes in June 2022,
we now return a json instead of a pandas dataframe.

	
property valid_mapping

	

8.32. DBFetch

Interface to DBFetch web service

What is DBFetch

	URL

	http://www.ebi.ac.uk/Tools/webservices/services/dbfetch

	Service

	http://www.ebi.ac.uk/Tools/webservices/services/dbfetch_rest

“DBFetch allows you to retrieve entries from various up-to-date biological
databases using entry identifiers or accession numbers. This is equivalent to
the CGI based dbfetch service. Like the CGI service a request can return a
maximum of 200 entries.”

—From http://www.ebi.ac.uk/Tools/webservices/services/dbfetch , Dec 2012

	
class DBFetch(verbose=False)

	Interface to DBFetch [http://www.ebi.ac.uk/Tools/webservices/services/dbfetch_rest] service

>>> from bioservices import DBFetch
>>> w = DBFetch()
>>> data = w.fetchBatch("uniprot" ,"zap70_human", "xml", "raw")

For more information about the API, check this page:
http://www.ebi.ac.uk/Tools/dbfetch/syntax.jsp

Constructor

	Parameters

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – print informative messages

	
fetch(query, db='ena_sequence', format='default', style='raw', pageHtml=False)

	Fetch an entry in a defined format and style.

	Parameters

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – the entry identifier in db:id format (e.g. ‘UniProtKB:WAP_RAT’).

	format (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the format required (default to fasta).

	style (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the style required (raw, default, html)

	Returns

	The format of the response depends on the format/style
parameter.

from bioservices import DBFetch
u = DBFfetch()
db.fetch(db="ena_sequence", format="fasta", query="L12344,L12345")
db.fetch(db="uniprot", format="fasta", query="P53503")

If db is ommited, the default is ena_sequence.
If formatare ommited, the default is EMBL format
The default style is raw data.

	
get_all_database_info()

	Get details of all available databases, includes formats and result styles.

	Returns

	A list of data structures describing the databases. See
getDatabaseInfo() for a description of the data structure.

	
get_database_format_styles(db, format)

	Get a list of style names available for a given database and format.

	Parameters

	
	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – database name to get available styles for (e.g. uniprotkb).

	format (str [https://docs.python.org/3/library/stdtypes.html#str]) – the data format to get available styles for (e.g. fasta).

	Returns

	An array of strings containing the style names.

>>> u.get_database_format_styles("uniprotkb", "fasta")
['default', 'raw', 'html']

	
get_database_formats(db)

	Get list of format names for a given database.

	Parameters

	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – valid database name

>>> db.get_database_formats("uniprotkb")
['default',
 'annot',
 'entrysize',
 'fasta',
 'gff3',
 'seqxml',
 'uniprot',
 'uniprotrdfxml',
 'uniprotxml',
 'dasgff',
 'gff2']

	
get_database_info(db=None)

	Get details describing specific database (data formats, styles)

	Parameters

	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – a valid database.

	Returns

	The output can be introspected and contains several attributes

>>> res = u.get_database_info('uniprotkb')
>>> print(res['description'])
'The UniProt Knowledgebase (UniProtKB) is the central access point for extensive curated protein information, including function, classification, and cross-references. Search UniProtKB to retrieve everything that is known about a particular sequence.'

	
property supported_databases

	Alias to getSupportedDBs.

8.33. Wikipathway

Interface to the WikiPathway service

What is WikiPathway ?

	URL

	http://www.wikipathways.org/index.php/WikiPathways

	REST

	http://webservice.wikipathways.org/

	Citation

	doi:10.1371/journal.pone.0006447 [http://www.plosone.org/article/info:doi/10.1371/journal.pone.0006447]

” WikiPathways is an open, public platform dedicated to the curation of
biological pathways by and for the scientific community.”

—From WikiPathway web site. Dec 2012

	
class WikiPathways(verbose=True, cache=False)

	Interface to Pathway [http://www.wikipathways.org/index.php] service

>>> from bioservices import WikiPathways
>>> s = Wikipathway()
>>> s.organism # default organism
'Homo sapiens'

Examples:

s.findPathwaysByText('MTOR')
s.getPathway('WP1471')
s.getPathwaysByOntologyTerm('DOID:344')
s.findPathwaysByXref('P45985')

The methods that require a login are not implemented (login(),
updatePathway(), removeCurationTag(), saveCurationTag(),
createPathway())

Methods not implemented at all:

	u’getCurationTagHistory’: No API found in Wikipathway web page

	u’getRelations’: No API found in Wikipathway web page

Constructor

	Parameters

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
createPathway(gpmlCode, authInfo)

	Create a new pathway on the WikiPathways website with a given GPML code.

Warning

Interface not exposed in bioservices.

Note

To create/modify pathways via the web service, you need to
have an account with web service write permissions. Please
contact us to request write access for the web service.

	Parameters

	
	gpml (str [https://docs.python.org/3/library/stdtypes.html#str]) – The GPML code.

	auth (object WSAuth) – The authentication info.

	Returns

	WSPathwayInfo The pathway info for the created pathway
(containing identifier, revision, etc.).

	
findInteractions(query)

	Find interactions defined in WikiPathways pathways.

	Parameters

	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of an entity to find interactions for (e.g. ‘P53’)

	Returns

	list of dictionaries

res = w.findInteractions("P53")

	
findPathwaysByLiterature(query)

	Find pathways by their literature references.

	Parameters

	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – The query, can be a pubmed id, author name
or title keyword.

	Returns

	dictionary with Pathway as keys

res = s.findPathwaysByLiterature(18651794)

	
findPathwaysByText(query, species=None)

	Find pathways using a textual search on the description and text labels of the pathway objects.

The query syntax offers several options:

	Combine terms with AND and OR. Combining terms with a space is equal
to using OR (‘p53 OR apoptosis’ gives the same result as ‘p53 apoptosis’).

	Group terms with parentheses, e.g. ‘(apoptosis OR mapk) AND p53’

	You can use wildcards * and ?. * searches for one or more
characters, ? searches for only one character.

	Use quotes to escape special characters. E.g. ‘“apoptosis*”’ will
include the * in the search and not use it as wildcard.

This function supports REST-style invocation.
Example: http://www.wikipathways.org/wpi/webservice/webservice.php/findPathwaysByText?query=apoptosis

	Parameters

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – The search query (e.g. ‘apoptosis’ or ‘p53’).

	species (str [https://docs.python.org/3/library/stdtypes.html#str]) – The species to limit the search to (leave blank to search on all species).

	Returns

	Array of WSSearchResult An array of search results.

s.findPathwaysByText(query="p53 OR mapk",species='Homo sapiens')

Warning

AND or OR must be in big caps

	
findPathwaysByXref(ids, codes=None)

	Find pathways by searching on the external references of DataNodes.

	Parameters

	
	ids (str string) – One or mode DataNode identifier(s) (e.g. ‘P45985’).
Datanodes can be (gene/protein/metabolite identifiers). For one
node, you can use a string (or number) or list of one identifier.
you can also provide a list of identifiers.

	codes (str [https://docs.python.org/3/library/stdtypes.html#str]) – You can restrict the search to a specific database.
See http://developers.pathvisio.org/wiki/DatabasesMapps#Supporteddatabasesystems
for details. Examples are “L” for entrez gene, “En” for ensembl. See
also the note here below for multiple identifiers/codes.

	Returns

	a dictionary

>>> s.findPathwaysByXref(ids="P45985")
>>> s.findPathwaysByXref(ids="P45985", codes="L")
>>> s.findPathwaysByXref(ids=["P45985"], codes=["L"])
>>> s.findPathwaysByXref(ids=["P45985", "ENSG00000130164"], codes=["L", "En"])

Note that in the last example, we specify multiple ids and codes
parameters to query for multiple xrefs at once. In that case, the
number of ids and codes parameters should match. Moreover, they will
be paired to form xrefs, so P45985 is searched for in the “L”
database while “ENSG00000130164” is searched for in the En” database
only.

	
getColoredPathway(pathwayId, filetype='svg', revision=0, color=None, graphId=None)

	Get a colored image version of the pathway.

	Parameters

	
	pwId (str [https://docs.python.org/3/library/stdtypes.html#str]) – The pathway identifier.

	revision (int [https://docs.python.org/3/library/functions.html#int]) – The revision number of the pathway (use ‘0’ for most recent version).

	fileType (str [https://docs.python.org/3/library/stdtypes.html#str]) – The image type (One of ‘svg’, ‘pdf’ or ‘png’). Not
yet implemented. svg is returned for now.

	Returns

	Binary form of the image.

Todo

graphId, color parameters

	
getCurationTags(pathwayId)

	Get all curation tags for the given pathway.

	Parameters

	pathwayId (str [https://docs.python.org/3/library/stdtypes.html#str]) – the pathway identifier.

	Returns

	Array of WSCurationTag. The curation tags.

s.getCurationTags("WP4")

	
getCurationTagsByName(name)

	Get all curation tags for the given tag name.

Use this method if you want to find all pathways that are tagged with a specific curation tag.

	Parameters

	tagName (str [https://docs.python.org/3/library/stdtypes.html#str]) – The tag name.

	Returns

	Array of WSCurationTag. The curation tags (one instance for each pathway that has been tagged).

s.getCurationTagsByName("Curation:FeaturedPathway")

	
getOntologyTermsByPathway(pathwayId)

	Get a list of ontology terms for a given pathway.

	Parameters

	pathwayId (str [https://docs.python.org/3/library/stdtypes.html#str]) – the pathway identifier.

	Returns

	Array of WSOntologyTerm. The ontology terms.

s.getOntologyTermsByPathway("WP4")

	
getPathway(pathwayId, revision=0)

	Download a pathway from WikiPathways.

	Parameters

	
	pathwayId (str [https://docs.python.org/3/library/stdtypes.html#str]) – the pathway identifier.

	revision (int [https://docs.python.org/3/library/functions.html#int]) – the revision number of the pathway (use ‘0’
for most recent version).

	Returns

	The pathway as a dictionary. The pathway is stored in gpml
format.

s.getPathway("WP2320")

	
getPathwayAs(pathwayId, filetype='png', revision=0)

	Download a pathway in the specified file format.

	Parameters

	
	pathwayId (str [https://docs.python.org/3/library/stdtypes.html#str]) – the pathway identifier.

	filetype (str [https://docs.python.org/3/library/stdtypes.html#str]) – the file format (default is .owl).

	revision (int [https://docs.python.org/3/library/functions.html#int]) – the revision number of the pathway (use ‘0’ for most recent version - this is default).

	Returns

	The file contents

Changed in version 1.3.0: return raw output of the service without any parsing

Note

use savePathwayAs() to save into a file.

	
getPathwayHistory(pathwayId, date)

	Get the revision history of a pathway.

	Parameters

	
	pathwayId (str [https://docs.python.org/3/library/stdtypes.html#str]) – the pathway identifier.

	date (str [https://docs.python.org/3/library/stdtypes.html#str]) – limit the results by date, only history items after
the given date (timestamp format) will be included. Can be a string
or number of the form YYYYMMDDHHMMSS.

	Returns

	The revision history.

Warning

seems unstable does not return the results systematically.

s.getPathwayHistory("WP4", 20110101000000)

	
getPathwayInfo(pathwayId)

	Get some general info about the pathway.

	Parameters

	pathwayId (str [https://docs.python.org/3/library/stdtypes.html#str]) – the pathway identifier.

	Returns

	The pathway info.

>>> from bioservices import *
>>> s = Wikipathway()
>>> s.getPathwayInfo("WP2320")

	
getPathwaysByOntologyTerm(terms)

	Get a list of pathways tagged with a given ontology term.

	Parameters

	terms (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ontology term identifier.

	Returns

	dataframe with pathways infomation.

>>> from bioservices import WikiPathways
>>> s = Wikipathway()
>>> s.getPathwaysByOntologyTerm('PW:0000724')

	
getPathwaysByParentOntologyTerm(term)

	Get a list of pathways tagged with any ontology term that is the child of the given Ontology term.

	Parameters

	term (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ontology term identifier.

	Returns

	List of WSPathwayInfo The pathway information.

	
getRecentChanges(timestamp)

	Get the recently changed pathways.

	Parameters

	timestamp (str [https://docs.python.org/3/library/stdtypes.html#str]) – Only get changes from after this time. Timestamp
format: yyyymmddMMHHSS (string or number)

	Returns

	The changed pathways in XML format

s.getRecentChanges(20110101000000)

Todo

interpret XML

	
listOrganisms()

	

	
listPathways(organism=None)

	Get a list of all available pathways.

	Parameters

	organism (str [https://docs.python.org/3/library/stdtypes.html#str]) – If provided, the data is filtered to keep only
the organism provided, which must be a valid name (check out
organism attribute)

	Returns

	dataframe. Index are the pathways identifiers (e.g. WP1)

(Source code, png, hires.png, pdf)

[image: _images/references-4.png]

	
login(usrname, password)

	Start a logged in session using an existing WikiPathways account.

Warning

Interface not exposed in bioservices.

This function will return an authentication code that can
be used to excecute methods that need authentication (e.g.
updatePathway).

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The username of the WikiPathways account.

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) – The password of the WikiPathways account.

	Returns

	The authentication code for this session.

	
property organism

	Read/write attribute for the organism

	
organisms

	Get a list of all available organisms.

	
removeCurationTag(pathwayId, name)

	Remove a curation tag from a pathway.

Warning

Interface not exposed in bioservices.

	
saveCurationTag(pathwayId, name, revision)

	Apply a curation tag to a pathway. This operation will overwrite any existing tag with the same name.

Warning

Interface not exposed in bioservices.

	Parameters

	pathwayId (str [https://docs.python.org/3/library/stdtypes.html#str]) – the pathway identifier.

	
savePathwayAs(pathwayId, filename, revision=0, display=True)

	Save a pathway.

	Parameters

	
	pathwayId (str [https://docs.python.org/3/library/stdtypes.html#str]) – the pathway identifier.

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the file. If a filename extension
is not provided the pathway will be saved as a pdf (default).

	revisionNumb (int [https://docs.python.org/3/library/functions.html#int]) – the revision number of the pathway (use
‘0 for most recent version).

	display (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the pathway will be displayed in your
browser.

Note

Method from bioservices. Not a WikiPathways function

Changed in version 1.7: return PNG by default instead of PDF. PDF
not working as of 20 Feb 2020 even on wikipathway website.

	
showPathwayInBrowser(pathwayId)

	Show a given Pathway into your favorite browser.

	Parameters

	pathwayId (str [https://docs.python.org/3/library/stdtypes.html#str]) – the pathway identifier.

	
updatePathway(pathwayId, describeChanges, gpmlCode, revision=0)

	Update a pathway on WikiPathways website with a given GPML code.

Warning

Interface not exposed in bioservices.

Note

To create/modify pathways via the web service, you need to
have an account with web service write permissions. Please contact
us to request write access for the web service.

	Parameters

	
	pwId (str [https://docs.python.org/3/library/stdtypes.html#str]) – The pathway identifier.

	description (str [https://docs.python.org/3/library/stdtypes.html#str]) – A description of the modifications.

	gpml (str [https://docs.python.org/3/library/stdtypes.html#str]) – The updated GPML code.

	revision (int [https://docs.python.org/3/library/functions.html#int]) – The revision number of the version this GPML
code was based on. This is used to prevent edit conflicts in
case another client edited the pathway after this client downloaded it.

	WSAuth_auth (object [https://docs.python.org/3/library/functions.html#object]) – The authentication info.

	Returns

	Boolean. True if the pathway was updated successfully.

9. Applications and extra tools

Web services have lots of overlap amongst themselves. For instance, fetching a FASTA sequence
can be done using many different services. Yet, once a FASTA is retrieved, one may want to perform additional tasks or save the FASTA into a file or whatever repetitive functionalities not included in Web Services anymore.

The goal of this sub-package is to provide convenient tools, which are not web services per se but that makes use of one or several Web Services already available within BioServices.

Warning

this is experimental and was added in version 1.2.0 so it may change quite a lot.

9.1. Peptides

	
class Peptides(verbose=False)

	>>> p = Peptides()
>>> p.get_peptide_position("Q8IYB3", "VPKPEPIPEPKEPSPE")
189

Sometimes, peptides are provided with a pattern indicating the phospho site.
e.g.,

>>>

	
get_fasta_sequence(uniprot_name)

	

	
get_phosphosite_position(uniprot_name, peptide)

	

9.2. FASTA

	
class FASTA

	Dedicated class to manipulates FASTA sequence(s)

Here is a FASTA file example:

>sp|P43408|KADA_METIG Adenylate kinase OS=Methanotorris igneus GN=adkA PE=1 SV=2
MKNKVVVVTGVPGVGGTTLTQKTIEKLKEEGIEYKMVNFGTVMFEVAKEEGLVEDRDQMR
KLDPDTQKRIQKLAGRKIAEMAKESNVIVDTHSTVKTPKGYLAGLPIWVLEELNPDIIVI
VETSSDEILMRRLGDATRNRDIELTSDIDEHQFMNRCAAMAYGVLTGATVKIIKNRDGLL
DKAVEELISVLK

The format is made of a header and a sequence. Any FASTA can be read
and the pair of header/sequence retrieved from the sequence and
header attributes. However, headers differ from one database to
another one and interpretation is not implemented except for SWISS-PROT.
Identifiers can be retrieved whatsoever.

You can read a FASTA sequence from a local file or download one from UniProt

>>> from bioservices.apps.fasta import FASTA
>>> f = FASTA()
>>> f.load("P43403")
>>> acc = f.accession # the accession (P43403)
>>> fasta = f.fasta # raw FASTA string
>>> seq = f.sequence # the sequence itself
>>> header = f.header # the header itself
>>> identifier = f.identifier

You can also get a dataframe also using Pandas library.:

>>> f.df

The columns stored in the dataframe encompase:

	Accession that is taken from the header (e.g., P43403 from uniprot)

	Sequence, a copy of the FASTA sequence

	Size, the length of the sequence.

	Database, the database type found in the header (e.g., sp for
SWISS-PROT; see below for a list of database and their header format).

	Some column such as Organism are filled only for some database

	Identififers is the begining of the header.

See also

MultiFASTA for multi FASTA manipulation.

List of identifiers corresponding to different databases.

	
	

	GenBank

	gi|gi-number|gb|accession|locus

	EMBL Data Library

	gi|gi-number|emb|accession|locus

	DDBJ, DNA Database of Japan

	gi|gi-number|dbj|accession|locus

	NBRF PIR

	pir||entry

	Protein Research Foundation

	prf||name

	SWISS-PROT

	sp|accession|name

	Brookhaven Protein Data Bank (1)

	pdb|entry|chain

	Brookhaven Protein Data Bank (2)

	entry:chain|PDBID|CHAIN|SEQUENCE

	Patents

	pat|country|number

	GenInfo Backbone Id

	bbs|number

	General database identifier

	gnl|database|identifier

	NCBI Reference Sequence

	ref|accession|locus

	Local Sequence identifier

	lcl|identifier

The :meth::load_fasta relies on UniProt service.

	
property PE

	returns PE keyword found in the header if any

	
property SV

	returns SV keyword found in the header if any

	
property accession

	

	
property dbtype

	

	
property df

	

	
property entry

	returns entry only

	
property fasta

	returns FASTA content

	
property gene_name

	returns gene name from GN keyword found in the header if any

	
get_fasta(id_)

	Fetches FASTA from uniprot and loads into attrbiute fasta

	Parameters

	id (str [https://docs.python.org/3/library/stdtypes.html#str]) – a given uniprot identifier

	Returns

	the FASTA contents

	
property header

	returns header only

	
property identifier

	

	
known_dbtypes = ['sp', 'gi']

	

	
load(id_)

	

	
load_fasta(id_)

	Fetches FASTA from uniprot and loads into attribute fasta

	Parameters

	id (str [https://docs.python.org/3/library/stdtypes.html#str]) – a given uniprot identifier

	Returns

	nothing

Note

same as get_fasta() but returns nothing

	
property name

	

	
property organism

	returns organism from OS keyword found in the header if any

	
read_fasta(filename)

	Reads a FASTA file and loads it

Type:

>>> f = FASTA()
>>> f.read_fasta(filename)
>>> f.fasta

	Returns

	nothing

Warning

If more than one FASTA is contained in the file, an error is raised

	
save_fasta(filename)

	Save FASTA file into a filename

	Parameters

	
	data (str [https://docs.python.org/3/library/stdtypes.html#str]) – the FASTA contents

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – where to save it

	
property sequence

	returns the sequence only

	
class MultiFASTA

	Class to manipulate several several FASTA items

Here, we load some FASTA using UniProt web service:

>>> from bioservices import MultiFASTA
>>> mf = MultiFASTA()
>>> mf.load_fasta("P43408")
>>> mf.load_fasta("P21318")

You can then get back to your accession entries as follows

>>> mf.ids
['P43408', 'P21318']

And the sequences in the same order can be accessed:

>>> len(mf)
2

Each FASTA is stored in fasta, which is a dictionary where each
values is an instance of FASTA:

>>> print(mf._fasta["P43408"].fasta)
>sp|P43408|KADA_METIG Adenylate kinase OS=Methanotorris igneus GN=adkA PE=1 SV=2
MKNKVVVVTGVPGVGGTTLTQKTIEKLKEEGIEYKMVNFGTVMFEVAKEEGLVEDRDQMR
KLDPDTQKRIQKLAGRKIAEMAKESNVIVDTHSTVKTPKGYLAGLPIWVLEELNPDIIVI
VETSSDEILMRRLGDATRNRDIELTSDIDEHQFMNRCAAMAYGVLTGATVKIIKNRDGLL
DKAVEELISVLK

The most convenient way to access to all data is to use the dataframe attribute:

>>> mf.df.Sequence

>>> from bioservices.apps import MultiFASTA
>>> f = MultiFASTA()
>>> f.load_fasta(["P43403", "P43410"])
>>> f.df.Size.hist()

(Source code, png, hires.png, pdf)

[image: _images/references-5.png]

	
property df

	

	
property fasta

	Returns all FASTA instances

	
hist_size(**kwds)

	

	
property ids

	returns list of keys/accession identifiers

	
load_fasta(ids)

	Loads a single FASTA file into the dictionary

	
read_fasta(filename)

	Load several FASTA from a filename

	
save_fasta(filename)

	Save all FASTA into a file

10. References to BioServices on the Web

	Galaxy: See the Log Archive at Galaxy log archive [http://wiki.galaxyproject.org/Community/Log/2013/UsingBioServicesWithGalaxy]

	EBI: See EBI programming web services [http://www.ebi.ac.uk/Tools/webservices/tutorials/06_programming/python]

	WikiPathways: references [http://wikipathways.tumblr.com/search/bioservices]

	GeneProf: example python [https://www.geneprof.org/GeneProf/webapi.jsp#example-python]

	http://www.scoop.it/t/bioinformatique

	http://bioinfo-fr.net/bioservices-module-python

	http://devbio.eu/?p=resources&presel=bioinfo

	biomartian from Endre Bakken Stovner https://github.com/endrebak/biomartian

11. FAQS

11.1. General Errors

The most common errors come from

	The web service that you are trying to access is down (temporarily or not)

	The web service API has changed

	A request inside bioservices is incorrect

	A timeout occured.

For the first problem, we cannot do anything except wait for the service to be
up again.

For the second, you are trying to update bioservices to reflect those changes.

For the two other issues, which are really bioservices problems, we recommend to
rerun your code setting the logging level to debug and send the code and errors
you see.

To set the debug level on on a web service:

u = UniProt(verbose=True)
u.logging.level = 'DEBUG'

11.2. Installation issues

11.2.1. ValueError: unknown locale: UTF-8 under Mac OS X 10.7 - Lion

The installation with PIP is succesful but I get a “ValueError: unknown locale: UTF-8” under Mac OS X 10.7 - Lion when typing from bioservices import *.

On solution is to fix your environment by typing the following code in a shell:

export LANG="it_IT.UTF-8"
export LC_COLLATE="it_IT.UTF-8"
export LC_CTYPE="it_IT.UTF-8"
export LC_MESSAGES="it_IT.UTF-8"
export LC_MONETARY="it_IT.UTF-8"
export LC_NUMERIC="it_IT.UTF-8"
export LC_TIME="it_IT.UTF-8"
export LC_ALL=

You can check if it works by typing

python -c 'import locale; print(locale.getdefaultlocale());'

If this works without error, then it is fixed and you should be able to import
bioservices. If so, make this solution persistent by adding the
code into your environment. For that, just copy and paste the code in a file called
.bashrc_profile (or .bashrc)

	reference

	blog entry [http://patrick.arminio.info/blog/2012/02/fix-valueerror-unknown-locale-utf8/]

11.3. General questions

11.3.1. How can I figure out the taxonomy identifier of the mouse ?

You can use the Taxon class that uses Ensembl/UniProt/Eutils depending on the
tasks. Here, we do not know the scientific name of taxonomy identifier of the
mouse. We can use the search_by_name fuction:

Warning

Taxon class is not part of BioServices but some
utilities have been added to BioKit (github.com/biokit)

Changed in version 1.3.

In earlier version of BioServices, you could use:

>>> from bioservices import Taxon
>>> t = Taxon()
>>> t.search_by_name("mouse")
u'10090'

But this is now in BioKit:

>>> from biokit import Taxonomy
>>> t = Taxonomy()
>>> results = t.fetch_by_name('mouse')
>>> results[0]['id']
u'10090'

11.3.2. How to convert ID from one database to another ?

Many web services provides convertors. In BioServices, you can access to Kegg
and UniProt that both provides convertor. For instance with Kegg, you can
convert all human (hsa) Kegg Id to uniprot Id with:

from bioservices import *
s = KEGG()
kegg_ids, uniprot_ids = s.conv("hsa", "uniprot")

Or you can use the uniprot mapping function:

from bioservices import *
u = UniProt()
u.mapping(to="KEGG_ID", fr="ACC", query="ZAP70_HUMAN")

11.4. Specific Usage

11.4.1. Why my uniprot request takes forever ?

This may happen. Consider:

from bioservices import *
u = UniProt()
u.search("P53")

This request performed on UniProt web sites is actually pretty fast but there
are 386 pages of results. In BioServices, the search commands reads the 386
pages of results and then stores the result in a variable. So it may take a while.

More generally if a request returns a very long result, it may take a while.
You can use the socket module:

import socket
socket.setdefaulttimeout(5.)

After 5 seconds, the read() call will stop returning whatever has been read so
far.

11.4.2. KEGG service

11.4.2.1. Is it possible to get the pathway information for multiple proteins ?

Currently there is no such function. You can only retrieve pathways given a
single protein Id. However, you can easily write such a function. Here is the
code for 2 proteins:

>>> p1 = k.get_pathway_by_gene("7535", "hsa") # correspond to ZAP70
>>> p2 = k.get_pathway_by_gene("6885", "hsa") # 6885 correspond to MAP3K7
>>> [k1 for k1 in p1.keys() if k1 in p2.keys()]
['hsa04660', 'hsa04064']

There are 2 pathways containing the proteins 7535 and 6885.

11.5. Interest of the BioServices classes REST and WSDL ?

There are a few technical aspects covered by BioServices to ease our life when
adding new modules such as timeout, long request, headers, and so on.

11.5.1. What is the difference between GET and POST

When the user enters information in a form and clicks Submit , there are two
ways the information can be sent from the browser to the server: in the URL, or
within the body of the HTTP request.

The alternative to the GET method is the POST method. This method packages the
name/value pairs inside the body of the HTTP request, which makes for a cleaner
URL and imposes no size limitations on the forms output. It is also more
secure.

12. Contributors

Contributors are the authors who started the development of BioServices
(and authors of this reference on BioInformatics [http://bioinformatics.oxfordjournals.org/content/29/24/3241]).

In addition to the main authors of the papers the following developers have
implemented modules now available in BioServices:

	Achilles Rasquinha implemented the BiGG models service bioservices.bigg module

	Sven-Maurice Althoff, Christian Knauth implemented the bioservices.muscle module.

	Patrick Short implemented the bioservices.clinvitae module

And thank you also to the contributions from users who have sent communication
via emails or via the ticket system [https://github.com/cokelaer/bioservices/issues].

Special thanks to Thoba Lose (https://github.com/thobalose) and
https://github.com/jsmusach for various pull requests.

Note that originally code (and earlier tickets) were hosted elsewhere [https://www.assembla.com/spaces/bioservices/tickets].

 Python Module Index

 a |
 b |
 c |
 d |
 e |
 h |
 i |
 k |
 m |
 n |
 o |
 p |
 q |
 r |
 s |
 u |
 w |
 x

 		 	

 		
 a	

 	[image: -]
 	
 bioservices.apps	

 	
 	
 bioservices.apps.fasta	

 	
 	
 bioservices.apps.peptides	

 		 	

 		
 b	

 	
 	
 bioservices.bigg	

 	
 	
 bioservices.biocontainers	

 	
 	
 bioservices.biodbnet	

 	
 	
 bioservices.biogrid	

 	
 	
 bioservices.biomart	

 	
 	
 bioservices.biomodels	

 		 	

 		
 c	

 	
 	
 bioservices.chebi	

 	
 	
 bioservices.chembl	

 	
 	
 bioservices.cog	

 		 	

 		
 d	

 	
 	
 bioservices.dbfetch	

 		 	

 		
 e	

 	
 	
 bioservices.ena	

 	
 	
 bioservices.eutils	

 		 	

 		
 h	

 	
 	
 bioservices.hgnc	

 		 	

 		
 i	

 	
 	
 bioservices.intact	

 		 	

 		
 k	

 	
 	
 bioservices.kegg	

 		 	

 		
 m	

 	
 	
 bioservices.muscle	

 	
 	
 bioservices.mygeneinfo	

 		 	

 		
 n	

 	
 	
 bioservices.ncbiblast	

 		 	

 		
 o	

 	
 	
 bioservices.omnipath	

 		 	

 		
 p	

 	
 	
 bioservices.panther	

 	
 	
 bioservices.pathwaycommons	

 	
 	
 bioservices.pdb	

 	
 	
 bioservices.pdbe	

 	
 	
 bioservices.pride	

 	
 	
 bioservices.psicquic	

 		 	

 		
 q	

 	
 	
 bioservices.quickgo	

 		 	

 		
 r	

 	
 	
 bioservices.reactome	

 	
 	
 bioservices.rhea	

 		 	

 		
 s	

 	
 	
 bioservices.seqret	

 	
 	
 bioservices.services	

 		 	

 		
 u	

 	
 	
 bioservices.unichem	

 	
 	
 bioservices.uniprot	

 		 	

 		
 w	

 	
 	
 bioservices.wikipathway	

 		 	

 		
 x	

 	
 	
 bioservices.xmltools	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	accession (FASTA property)

 	activeDBs (PSICQUIC property)

 	add_attribute_to_xml() (BioMart method)

 	add_dataset_to_xml() (BioMart method)

 	
 	add_filter_to_xml() (BioMart method)

 	Annotation() (QuickGO method)

 	Annotation_from_goid() (QuickGO method)

 	attributes() (BioMart method)

B

 	
 	BiGG (class in bioservices.bigg)

 	Biocontainers (class in bioservices.biocontainers)

 	BioDBNet (class in bioservices.biodbnet)

 	BioGRID (class in bioservices.biogrid)

 	BioMart (class in bioservices.biomart)

 	BioModels (class in bioservices.biomodels)

 	
 bioservices.apps.fasta

 	module

 	
 bioservices.apps.peptides

 	module

 	
 bioservices.bigg

 	module

 	
 bioservices.biocontainers

 	module

 	
 bioservices.biodbnet

 	module

 	
 bioservices.biogrid

 	module

 	
 bioservices.biomart

 	module

 	
 bioservices.biomodels

 	module

 	
 bioservices.chebi

 	module

 	
 bioservices.chembl

 	module

 	
 bioservices.cog

 	module

 	
 bioservices.dbfetch

 	module

 	
 bioservices.ena

 	module

 	
 bioservices.eutils

 	module

 	
 bioservices.hgnc

 	module

 	
 bioservices.intact

 	module

 	
 bioservices.kegg

 	module

 	
 	
 bioservices.muscle

 	module

 	
 bioservices.mygeneinfo

 	module

 	
 bioservices.ncbiblast

 	module

 	
 bioservices.omnipath

 	module

 	
 bioservices.panther

 	module

 	
 bioservices.pathwaycommons

 	module

 	
 bioservices.pdb

 	module

 	
 bioservices.pdbe

 	module

 	
 bioservices.pride

 	module

 	
 bioservices.psicquic

 	module

 	
 bioservices.quickgo

 	module

 	
 bioservices.reactome

 	module

 	
 bioservices.rhea

 	module

 	
 bioservices.seqret

 	module

 	
 bioservices.services

 	module

 	
 bioservices.unichem

 	module

 	
 bioservices.uniprot

 	module

 	
 bioservices.wikipathway

 	module

 	
 bioservices.xmltools

 	module

 	BioServicesError

 	briteIds (KEGG property)

C

 	
 	CACHING (Service property)

 	ChEBI (class in bioservices.chebi)

 	ChEMBL (class in bioservices.chembl)

 	clear_cache() (REST method)

 	code2Tnumber() (KEGG method)

 	COG (class in bioservices.cog)

 	compoundIds (KEGG property)

 	compounds2accession() (ChEMBL method)

 	configuration() (BioMart method)

 	
 	content_types (REST attribute)

 	conv() (ChEBI method)

 	(KEGG method)

 	convert() (PSICQUIC method)

 	convertAll() (PSICQUIC method)

 	create_attribute() (BioMart method)

 	create_filter() (BioMart method)

 	createPathway() (WikiPathways method)

 	custom_query() (BioMart method)

D

 	
 	data_warehouse() (ENA method)

 	databases (BioMart property)

 	(EUtils property)

 	(KEGG property)

 	(NCBIblast property)

 	datasets() (BioMart method)

 	db2db() (BioDBNet method)

 	DBFetch (class in bioservices.dbfetch)

 	dbFind() (BioDBNet method)

 	dbinfo() (KEGG method)

 	dbOrtho() (BioDBNet method)

 	dbReport() (BioDBNet method)

 	
 	dbtype (FASTA property)

 	dbWalk() (BioDBNet method)

 	debug_message() (REST method)

 	default_extension (PathwayCommons property)

 	delete_cache() (REST method)

 	delete_one() (REST method)

 	details() (IntactComplex method)

 	df (FASTA property)

 	(MultiFASTA property)

 	displayNames (BioMart property)

 	download() (BiGG method)

 	drugIds (KEGG property)

E

 	
 	easyXML (class in bioservices.xmltools)

 	easyXML() (Service method)

 	easyXMLConversion (Service property)

 	ECitMatch() (EUtils method)

 	EFetch() (EUtils method)

 	EGQuery() (EUtils method)

 	EInfo() (EUtils method)

 	ELink() (EUtils method)

 	email (EUtils attribute)

 	
 	ENA (class in bioservices.ena)

 	entry (FASTA property)

 	entry() (KEGG method)

 	enzymeIds (KEGG property)

 	EPost() (EUtils method)

 	ESearch() (EUtils method)

 	ESpell() (EUtils method)

 	ESummary() (EUtils method)

 	EUtils (class in bioservices.eutils)

 	EUtilsParser (class in bioservices.eutils)

F

 	
 	FASTA (class in bioservices.apps.fasta)

 	fasta (FASTA property)

 	(MultiFASTA property)

 	fetch() (DBFetch method)

 	(HGNC method)

 	filters() (BioMart method)

 	
 	find() (KEGG method)

 	findInteractions() (WikiPathways method)

 	findPathwaysByLiterature() (WikiPathways method)

 	findPathwaysByText() (WikiPathways method)

 	findPathwaysByXref() (WikiPathways method)

 	formats (PSICQUIC property)

G

 	
 	gene_name (FASTA property)

 	gene_product_search() (QuickGO method)

 	genes() (BiGG method)

 	get() (KEGG method)

 	(PathwayCommons method)

 	get_about() (OmniPath method)

 	get_activity() (ChEMBL method)

 	get_all_cogs_definition() (COG method)

 	get_all_database_info() (DBFetch method)

 	get_all_models() (BioModels method)

 	get_all_src_ids() (UniChem method)

 	get_annotation_datasets() (Panther method)

 	get_approved_drugs() (ChEMBL method)

 	get_assay() (ChEMBL method)

 	get_assembly() (PDBe method)

 	get_async() (REST method)

 	get_ATC() (ChEMBL method)

 	get_binding_site() (ChEMBL method)

 	get_binding_sites() (PDBe method)

 	get_biotherapeutic() (ChEMBL method)

 	get_cell_line() (ChEMBL method)

 	get_chembl_id_lookup() (ChEMBL method)

 	get_cog_definition_by_cog_id() (COG method)

 	get_cog_definition_by_name() (COG method)

 	get_cogs() (COG method)

 	get_cogs_by_assembly_id() (COG method)

 	get_cogs_by_category() (COG method)

 	get_cogs_by_category_() (COG method)

 	get_cogs_by_category_id() (COG method)

 	get_cogs_by_gene() (COG method)

 	get_cogs_by_id() (COG method)

 	get_cogs_by_id_and_category() (COG method)

 	get_cogs_by_id_and_organism() (COG method)

 	get_cogs_by_orgnanism() (COG method)

 	get_cogs_by_taxon_id() (COG method)

 	get_complex_subunits() (Reactome method)

 	get_complexes() (Reactome method)

 	get_compound_record() (ChEMBL method)

 	get_compound_structural_alert() (ChEMBL method)

 	get_compounds() (UniChem method)

 	get_connectivity() (UniChem method)

 	get_current_ids() (PDB method)

 	get_data() (ENA method)

 	get_database_format_styles() (DBFetch method)

 	get_database_formats() (DBFetch method)

 	get_database_info() (DBFetch method)

 	get_datasets() (BioMart method)

 	get_df() (UniProt method)

 	get_discover() (Reactome method)

 	get_diseases() (Reactome method)

 	get_diseases_doid() (Reactome method)

 	get_document() (ChEMBL method)

 	get_document_similarity() (ChEMBL method)

 	get_document_term() (ChEMBL method)

 	get_drug() (ChEMBL method)

 	get_drug_indication() (ChEMBL method)

 	get_drugbank_annotation() (PDBe method)

 	get_electron_density_statistics() (PDBe method)

 	get_enrichment() (Panther method)

 	get_entity_componentOf() (Reactome method)

 	get_entity_otherForms() (Reactome method)

 	get_event_ancestors() (Reactome method)

 	get_eventsHierarchy() (Reactome method)

 	get_experiment() (PDBe method)

 	get_exporter_diagram() (Reactome method)

 	get_exporter_fireworks() (Reactome method)

 	get_exporter_reaction() (Reactome method)

 	get_exporter_sbml() (Reactome method)

 	get_family_msa() (Panther method)

 	get_family_ortholog() (Panther method)

 	get_fasta() (FASTA method)

 	(UniProt method)

 	get_fasta_sequence() (Peptides method)

 	get_files() (PDBe method)

 	get_functional_annotation() (PDBe method)

 	get_genes() (MyGeneInfo method)

 	get_go_ancestors() (QuickGO method)

 	get_go_chart() (QuickGO method)

 	get_go_children() (QuickGO method)

 	get_go_paths() (QuickGO method)

 	get_go_slim() (ChEMBL method)

 	get_go_terms() (QuickGO method)

 	get_headers() (REST method)

 	get_homolog_position() (Panther method)

 	get_id_from_name() (UniChem method)

 	get_image() (ChEMBL method)

 	get_images() (UniChem method)

 	get_inchi_from_inchikey() (UniChem method)

 	get_info() (HGNC method)

 	(OmniPath method)

 	get_interactions() (OmniPath method)

 	get_interactors_psicquic_molecule_details() (Reactome method)

 	get_interactors_psicquic_molecule_summary() (Reactome method)

 	get_interactors_psicquic_resources() (Reactome method)

 	get_interactors_static_molecule_details() (Reactome method)

 	get_interactors_static_molecule_pathways() (Reactome method)

 	get_interactors_static_molecule_summary() (Reactome method)

 	get_ligand_monomers() (PDBe method)

 	get_mapping() (Panther method)

 	get_mapping_identifier_pathways() (Reactome method)

 	get_mapping_identifier_reactions() (Reactome method)

 	get_mechanism() (ChEMBL method)

 	get_metabolism() (ChEMBL method)

 	get_metabolites() (Rhea method)

 	get_metadata() (MyGeneInfo method)

 	get_model() (BioModels method)

 	get_model_download() (BioModels method)

 	get_model_files() (BioModels method)

 	get_modified_residues() (PDBe method)

 	get_molecule() (ChEMBL method)

 	get_molecule_form() (ChEMBL method)

 	get_molecules() (PDBe method)

 	get_mutated_residues() (PDBe method)

 	get_network() (OmniPath method)

 	get_nmr_resources() (PDBe method)

 	get_observed_ranges() (PDBe method)

 	get_observed_ranges_in_pdb_chain() (PDBe method)

 	get_observed_residues_ratio() (PDBe method)

 	get_one() (REST method)

 	
 	get_one_gene() (MyGeneInfo method)

 	get_one_query() (MyGeneInfo method)

 	get_organism() (ChEMBL method)

 	get_ortholog() (Panther method)

 	get_p2m_missing() (BioModels method)

 	get_p2m_representative() (BioModels method)

 	get_p2m_representatives() (BioModels method)

 	get_parameter_details() (MUSCLE method)

 	(NCBIblast method)

 	(Seqret method)

 	get_parameters() (MUSCLE method)

 	(NCBIblast method)

 	(Seqret method)

 	get_pathway_by_gene() (KEGG method)

 	get_pathway_containedEvents() (Reactome method)

 	get_pathway_containedEvents_by_attribute() (Reactome method)

 	get_pathways() (Panther method)

 	get_pathways_low_diagram_entity() (Reactome method)

 	get_pathways_low_diagram_entity_allForms() (Reactome method)

 	get_pathways_low_entity() (Reactome method)

 	get_pathways_low_entity_allForms() (Reactome method)

 	get_pathways_top() (Reactome method)

 	get_pdgsmm_missing() (BioModels method)

 	get_pdgsmm_representative() (BioModels method)

 	get_pdgsmm_representatives() (BioModels method)

 	get_peptide_evidence() (PRIDE method)

 	get_phosphosite_position() (Peptides method)

 	get_project() (PRIDE method)

 	get_project_files() (PRIDE method)

 	get_projects() (PRIDE method)

 	get_projects_count() (PRIDE method)

 	get_protein_class() (ChEMBL method)

 	get_protein_evidences() (PRIDE method)

 	get_ptms() (OmniPath method)

 	get_queries() (MyGeneInfo method)

 	get_references() (Reactome method)

 	get_related_dataset() (PDBe method)

 	get_related_publications() (PDBe method)

 	get_release_status() (PDBe method)

 	get_residue_listing() (PDBe method)

 	get_residue_listing_in_pdb_chain() (PDBe method)

 	get_resources() (OmniPath method)

 	get_result() (MUSCLE method)

 	(NCBIblast method)

 	(Seqret method)

 	get_result_types() (MUSCLE method)

 	(NCBIblast method)

 	(Seqret method)

 	get_secondary_structure() (PDBe method)

 	get_sifgraph_common_stream() (PathwayCommons method)

 	get_sifgraph_neighborhood() (PathwayCommons method)

 	get_sifgraph_pathsbetween() (PathwayCommons method)

 	get_sifgraph_pathsfromto() (PathwayCommons method)

 	get_similarity() (ChEMBL method)

 	get_similarity_sequence() (PDB method)

 	get_source() (ChEMBL method)

 	get_source_info_by_id() (UniChem method)

 	get_source_info_by_name() (UniChem method)

 	get_sources() (UniChem method)

 	get_sources_by_inchikey() (UniChem method)

 	get_sources_by_inchikey_verbose() (UniChem method)

 	get_species_all() (Reactome method)

 	get_species_main() (Reactome method)

 	get_stats() (Biocontainers method)

 	(PRIDE method)

 	get_status() (ChEMBL method)

 	(MUSCLE method)

 	(NCBIblast method)

 	(Seqret method)

 	get_status_resources() (ChEMBL method)

 	get_structure() (UniChem method)

 	get_substructure() (ChEMBL method)

 	get_summary() (PDBe method)

 	get_supported_families() (Panther method)

 	get_supported_genomes() (Panther method)

 	get_sync() (REST method)

 	get_target() (ChEMBL method)

 	get_target_component() (ChEMBL method)

 	get_target_prediction() (ChEMBL method)

 	get_target_relation() (ChEMBL method)

 	get_taxon() (ENA method)

 	get_taxon_id() (Panther method)

 	get_taxonomic_categories() (COG method)

 	get_taxonomic_category_by_name() (COG method)

 	get_taxonomy() (MyGeneInfo method)

 	get_tissue() (ChEMBL method)

 	get_tools() (Biocontainers method)

 	get_tree_info() (Panther method)

 	get_versions_one_tool() (Biocontainers method)

 	get_xml() (BioMart method)

 	get_xref_source() (ChEMBL method)

 	getAllOntologyChildrenInPath() (ChEBI method)

 	getchildren() (easyXML method)

 	getColoredPathway() (WikiPathways method)

 	getCompleteEntity() (ChEBI method)

 	getCompleteEntityByList() (ChEBI method)

 	getCurationTags() (WikiPathways method)

 	getCurationTagsByName() (WikiPathways method)

 	getDirectOutputsForInput() (BioDBNet method)

 	getInputs() (BioDBNet method)

 	getInteractionCounter() (PSICQUIC method)

 	getLiteEntity() (ChEBI method)

 	getName() (PSICQUIC method)

 	getOntologyChildren() (ChEBI method)

 	getOntologyParents() (ChEBI method)

 	getOntologyTermsByPathway() (WikiPathways method)

 	getOutputsForInput() (BioDBNet method)

 	getPathway() (WikiPathways method)

 	getPathwayAs() (WikiPathways method)

 	getPathwayHistory() (WikiPathways method)

 	getPathwayInfo() (WikiPathways method)

 	getPathwaysByOntologyTerm() (WikiPathways method)

 	getPathwaysByParentOntologyTerm() (WikiPathways method)

 	getRecentChanges() (WikiPathways method)

 	getStructureSearch() (ChEBI method)

 	getUpdatedPolymer() (ChEBI method)

 	getUserAgent() (REST method)

 	glycanIds (KEGG property)

 	go_search() (QuickGO method)

 	graph() (PathwayCommons method)

H

 	
 	header (FASTA property)

 	help() (EUtils method)

 	HGNC (class in bioservices.hgnc)

 	hist_size() (MultiFASTA method)

 	
 	host (BioMart property)

 	hosts (BioMart property)

 	http_delete() (REST method)

 	http_get() (REST method)

 	http_post() (REST method)

I

 	
 	identifier (FASTA property)

 	ids (MultiFASTA property)

 	
 	IntactComplex (class in bioservices.intact)

 	isOrganism() (KEGG method)

K

 	
 	KEGG (class in bioservices.kegg)

 	KEGGParser (class in bioservices.kegg)

 	
 	known_dbtypes (FASTA attribute)

 	knownName() (PSICQUIC method)

 	koIds (KEGG property)

L

 	
 	link() (KEGG method)

 	list() (KEGG method)

 	listOrganisms() (WikiPathways method)

 	listPathways() (WikiPathways method)

 	load() (FASTA method)

 	
 	load_fasta() (FASTA method)

 	(MultiFASTA method)

 	login() (WikiPathways method)

 	lookfor() (BioMart method)

 	lookfor_organism() (KEGG method)

 	lookfor_pathway() (KEGG method)

M

 	
 	mapping() (UniProt method)

 	mappingOneDB() (PSICQUIC method)

 	marts (BioMart property)

 	metabolites() (BiGG method)

 	models (BiGG property)

 	
 module

 	bioservices.apps.fasta

 	bioservices.apps.peptides

 	bioservices.bigg

 	bioservices.biocontainers

 	bioservices.biodbnet

 	bioservices.biogrid

 	bioservices.biomart

 	bioservices.biomodels

 	bioservices.chebi

 	bioservices.chembl

 	bioservices.cog

 	bioservices.dbfetch

 	bioservices.ena

 	bioservices.eutils

 	bioservices.hgnc

 	bioservices.intact

 	bioservices.kegg

 	bioservices.muscle

 	bioservices.mygeneinfo

 	bioservices.ncbiblast

 	bioservices.omnipath

 	bioservices.panther

 	bioservices.pathwaycommons

 	bioservices.pdb

 	bioservices.pdbe

 	bioservices.pride

 	bioservices.psicquic

 	bioservices.quickgo

 	bioservices.reactome

 	bioservices.rhea

 	bioservices.seqret

 	bioservices.services

 	bioservices.unichem

 	bioservices.uniprot

 	bioservices.wikipathway

 	bioservices.xmltools

 	
 	moduleIds (KEGG property)

 	MultiFASTA (class in bioservices.apps.fasta)

 	MUSCLE (class in bioservices.muscle)

 	MyGeneInfo (class in bioservices.mygeneinfo)

N

 	
 	name (FASTA property)

 	(Reactome property)

 	
 	names (BioMart property)

 	NCBIblast (class in bioservices.ncbiblast)

 	new_query() (BioMart method)

O

 	
 	OmniPath (class in bioservices.omnipath)

 	on_web() (Service method)

 	order_by() (ChEMBL method)

 	organism (FASTA property)

 	(KEGG property)

 	(WikiPathways property)

 	
 	organismIds (KEGG property)

 	organisms (WikiPathways attribute)

 	organismTnumbers (KEGG property)

P

 	
 	Panther (class in bioservices.panther)

 	parameters (MUSCLE property)

 	(NCBIblast property)

 	(Seqret property)

 	parse() (KEGG method)

 	(KEGGParser method)

 	parse_kgml_pathway() (KEGG method)

 	parse_xml() (EUtils method)

 	pathway2sif() (KEGG method)

 	PathwayCommons (class in bioservices.pathwaycommons)

 	pathwayIds (KEGG property)

 	
 	PDB (class in bioservices.pdb)

 	PDBe (class in bioservices.pdbe)

 	PE (FASTA property)

 	Peptides (class in bioservices.apps.peptides)

 	post_one() (REST method)

 	postCleaning() (PSICQUIC method)

 	postCleaningAll() (PSICQUIC method)

 	preCleaning() (PSICQUIC method)

 	PRIDE (class in bioservices.pride)

 	print_status() (PSICQUIC method)

 	PSICQUIC (class in bioservices.psicquic)

 	pubmed() (Service method)

Q

 	
 	query() (BioMart method)

 	(PSICQUIC method)

 	(Rhea method)

 	
 	queryAll() (PSICQUIC method)

 	quick_search() (UniProt method)

 	QuickGO (class in bioservices.quickgo)

R

 	
 	reactionIds (KEGG property)

 	reactions() (BiGG method)

 	Reactome (class in bioservices.reactome)

 	read_fasta() (FASTA method)

 	(MultiFASTA method)

 	read_registry() (PSICQUIC method)

 	readXML (class in bioservices.xmltools)

 	registry (PSICQUIC property)

 	registry() (BioMart method)

 	registry_actives (PSICQUIC property)

 	registry_counts (PSICQUIC property)

 	registry_names (PSICQUIC property)

 	
 	registry_restexamples (PSICQUIC property)

 	registry_restricted (PSICQUIC property)

 	registry_resturls (PSICQUIC property)

 	registry_soapurls (PSICQUIC property)

 	registry_versions (PSICQUIC property)

 	removeCurationTag() (WikiPathways method)

 	response_codes (Service attribute)

 	REST (class in bioservices.services)

 	retrieve() (UniProt method)

 	Rhea (class in bioservices.rhea)

 	run() (MUSCLE method)

 	(NCBIblast method)

 	(Seqret method)

S

 	
 	save_fasta() (FASTA method)

 	(MultiFASTA method)

 	save_pathway() (KEGG method)

 	save_str_to_image() (Service method)

 	saveCurationTag() (WikiPathways method)

 	savePathwayAs() (WikiPathways method)

 	search() (BiGG method)

 	(BioModels method)

 	(HGNC method)

 	(IntactComplex method)

 	(PathwayCommons method)

 	(PDB method)

 	(Rhea method)

 	(UniProt method)

 	search_activity() (ChEMBL method)

 	search_assay() (ChEMBL method)

 	search_chembl_id_lookup() (ChEMBL method)

 	search_document() (ChEMBL method)

 	search_download() (BioModels method)

 	search_facet() (Reactome method)

 	
 	search_facet_query() (Reactome method)

 	search_molecule() (ChEMBL method)

 	search_parameter() (BioModels method)

 	search_protein_class() (ChEMBL method)

 	search_query() (Reactome method)

 	search_spellcheck() (Reactome method)

 	search_suggest() (Reactome method)

 	search_target() (ChEMBL method)

 	Seqret (class in bioservices.seqret)

 	sequence (FASTA property)

 	Service (class in bioservices.services)

 	session (REST property)

 	show_entry() (KEGG method)

 	show_module() (KEGG method)

 	show_pathway() (KEGG method)

 	showPathwayInBrowser() (WikiPathways method)

 	snp_summary() (EUtils method)

 	soup (easyXML property)

 	supported_databases (DBFetch property)

 	SV (FASTA property)

T

 	
 	taxonomy_summary() (EUtils method)

 	TIMEOUT (REST property)

 	(WSDLService property)

 	
 	Tnumber2code() (KEGG method)

 	top_pathways() (PathwayCommons method)

 	traverse() (PathwayCommons method)

U

 	
 	UniChem (class in bioservices.unichem)

 	UniProt (class in bioservices.uniprot)

 	uniref() (UniProt method)

 	
 	updatePathway() (WikiPathways method)

 	url (ENA attribute)

 	(Service property)

V

 	
 	valid_attributes (BioMart property)

 	valid_mapping (UniProt property)

 	
 	version (BiGG property)

 	(Reactome property)

 	version() (BioMart method)

W

 	
 	wait() (MUSCLE method)

 	(NCBIblast method)

 	WikiPathways (class in bioservices.wikipathway)

 	
 	wsdl_create_factory() (WSDLService method)

 	wsdl_methods (WSDLService property)

 	wsdl_methods_info() (WSDLService method)

 	WSDLService (class in bioservices.services)

Whats’ new, what has changed

From version 1.8.1 onwards change log will be on the main page.

Revision 1.8.1

	fix change in kegg (ORG_CODE replaces DEFINITION)

Revision 1.8.0 roadmap

	removed chemspider,picr and clinvitae services due to deprecated services

Revision 1.7.12 (Jan 2021-July 2021)

	continous integration revisited with github actions

	NEWS:

	COG services qdded

	New module: mygeneinfom pdbe

	added panther module (pantherdb.org)

	CHANGES

	update dbbionet to fulfill future new API

	Migrate to PDB new API (Jan 2021)

	Update Quickgo service

	Integration new Biomodels API following Combine/Harmony meetng

	Update ChEMBL after an ChEMBL API change

	BUGS and FIXES

	General fixes and update from @thobalose (https://github.com/cokelaer/bioservices/pull/149) to

	PSICQUIC fix (https://github.com/cokelaer/bioservices/issues/189) to

	Fix ENA new API

	Fix NCBIBlast and Muscle services (new API)

	DEPRECATED:

	deprecated PICR and TCGA modules (the latter was not really available anyway)

Revision 1.7.11 (Dec 2020)

	Fix https://github.com/cokelaer/bioservices/issues/183 (warning in uniprot

	Fix annoying warning https://github.com/cokelaer/bioservices/issues/184

	Implemented new PDB services (Update API changed in Nov/DEc 2020)

Revision 1.7.10 (Nov 2020)

	Fix KEGG https://github.com/cokelaer/bioservices/issues/182 adding NETWORK field

	Fix Pathway common with new API https://github.com/cokelaer/bioservices/issues/135

	Update the PathwayCommon service with new API

	Update the Rhea service with new API

Revision 1.7.9

	add missing field in KEgg Parser (REL_PATHWAY)

	fix panther.get_enrichment output (try/except)

Revision 1.7.8

	Fix ENA new API

	fix missing plugin in requirements-dev.txt

Revision 1.7.7

	small fix on pantherdb (autocorrect typo in pantherdb api)

Revision 1.7.6

	Fixing ncbiblast and muscle services

	Fixing quickgo services by adding new methods

	Fixing chembl and all failing tests and modules (omicdi, seqret,etc)

Revision 1.7.5

	NEW MODULE: mygeneinfo, pdbe

	Limits the request to 10 per seconds (3 for eutils). This fixes
https://github.com/cokelaer/bioservices/issues/7

	update quickgo

	Update PDB module (will not be maintained in the future, to usePDB instead.)

	Fix issue in Eutils/ECitMatch reported here https://github.com/cokelaer/bioservices/issues/169
and here https://tinyurl.com/y6u2cyjq on stackoverflow

Revision 1.7.4 (March 2020 Combine/Harmany2020 hackathon)

	Integration of BioModels new API (REST instead of WSDL and different
functionalities) in coordination with Mihai Glont and Tung Nguyen at EMBL-EBI
during the Combine-Harmony hackathon.

	Integration of BiGG models service thanks to https://github.com/achillesrasquinha contribution.

	Fixing notebooks (biomodels and uniprot)

	Move the miriam services to the attic

Revision 1.7.3 (March 2020)

	fixing chembl after API changed. Fix the get_status_resources method by
removing document_term and target_prediction. Changed acd_log into alogp: for
some reasons this was changed. There was a warning on 4th March 2020 telling
that changes may occur.

Revision 1.7.2 (March 2020)

	Fixing ReadTheDocs online documentation and Changelog

Revision 1.7.1 (Feb 2020)

	Just updating the README and setup metadata

Revision 1.7.0 (Feb 2020)

	
	Pull request
	
	from @thobalose (https://github.com/cokelaer/bioservices/pull/149) to
update tests, travis recipes, pinned matplotlib to 3.0.3

	
	NEWS:
	
	panther module (pantherdb.org)

	add a test for the pubchem, pfam and eva modules, which are still
in draft version though

	
	CHANGES
	
	PICR module is fully commented. The service is most probably deprecated.
Not on EBI website anymore

	remove TCGA, which waws only a draft version with one method.

	
	BUGS and FIXES
	
	wikipathway: fixed getPathway, savePathway, getPathwayByLiterature and
coloredPathway methods. Some are failing due to some wikipathway
temporary failures.

	Fixed https://github.com/cokelaer/bioservices/issues/148 to have a more
informative error message (array express)

	Fixed KeggParser for the GENE entries to have the correct ID name.
https://github.com/cokelaer/bioservices/issues/151

Revision 1.6.0

	
	CHANGES:
	
	rewrote entirely the ChEMBL wrapper due to new ChEMBL API.

	removed the quickgo_old module and its tests

	Fix typo for a “valid colum,” in uniprot module

	Changed biomodels WSDL endpoint (thanks to https://github.com/thobalose.)

	uses colorlog to have more robust and consistent logging.

	
	BUGS:
	
	Fix wikipathway XML issues by outputing dictionaries now. This fixes
https://github.com/cokelaer/bioservices/issues/131

	Fix https://github.com/cokelaer/bioservices/issues/137 to handle KEGG GENE
field properly in KEGGParse

	Fix https://github.com/cokelaer/bioservices/issues/125 thanks to
https://github.com/thobalose.

Revision 1.5.2

	Fix retmode in EUtils.Efetch fonction. Was not taken into account but set to
text by default but this seemed to have changed recently so this bug emerged
while it was silent before.

	Issue in EUtils URL (trailing /) fixed in this PR https://github.com/cokelaer/bioservices/pull/116

	Major update of Reactome class. The old one is named ReactomeOld and the new
one uses the new Reactome API

Revision 1.5.1

Support for Python 2.6 dropped.

	
	CHANGES:
	
	using proper logging

Revision 1.5

Support for Python 3.6 on Travis.

	
	BUG:
	
	kegg: fix #75 and #77 (missing keywords in KEGG)

	kegg: fix #79 (mis-interpreted cases reported by kirienko with examples.

	kegg: fix #85 (some entries are not interpreted)

	
	CHANGES:
	
	biodbnet: conversion from WSDL to REST. Note methods’ arguments
changes: inputValues to input_values, dbPath to db_path. Uses pandas

	wikipathways: conversion from WSDL to REST. All wikipathways service
uses Pandas and returns dataframes.

	Better implementation of secure host option and more xml customization #98

	move quickgo.py to quickgo_old.py

	move readseq to seqret (https://github.com/cokelaer/bioservices/issues/89)

	move wsdbfetch to dbfetch and move from WSDL to REST service

	
	NEWS:
	
	quickgo uses the new API from EBI (see changes)

	seqret uses the new API (instead of readseq)

	dbfetch uses new API (instead of WSDL)

	Fixes the licensing (GPLv3 everywhere)

For developers: use pytest instead of nosetests.

Revision 1.4

	
	1.4.17: rhea URL changed and add get_metabolites function. Fix pride test and
	add missing license file

	1.4.16: simplify setup

	
	1.4.15:
	
	
	BUG:
	
	ensembl.org in biomart was not reachable anymore. This is fixed
by using requests to check URL existence.

	in ensembl module tolist -> to_list

	Fix ensembl tests

	
	1.4.14:
	
	
	CHANGES:
	
	update http to https in EUtils

	missing TARGET field in KEGGParser reported in issue #66

	
	1.4.13:
	
	
	NEWS:
	
	Add a download_fasta dedicated function to download a fasta file
either from ENA or NCBI given its accession. See
bioservices.apps.download_fasta. Used within Sequana project

	
	1.4.12:
	
	
	BUG:
	
	Fix a regression bug in ncbiblast introduced in earlier commits
https://github.com/cokelaer/bioservices/issues/61

	
	CHANGES:
	
	add PRODUCT/ALL_REAC/HISTORY/SYSNAME in KEGG parser thanks to issue
reported in https://github.com/cokelaer/bioservices/issues/60

	
	1.4.11:
	
	
	NEWS:
	
	EUTils can now return a dictionary rather than a xml

	New method get_taxon in ENA class

	EnsemblFTP added to ensembl module

	1.4.10: fixing a bug/typo in pypi

	
	1.4.9:
	
	
	BUG
	
	KeggParser missing parser for the SEQUENCE keyword is now available
https://github.com/cokelaer/bioservices/issues/46 ,
https://github.com/cokelaer/bioservices/issues/51

	
	CHANGES:
	
	Improves way biomart handles errors (see https://github.com/cokelaer/bioservices/issues/50)

	
	1.4.8:
	
	NEW: add new module for the omnipath web service in bioservices.omnipath.

	
	1.4.7:
	
	NEWS: add method get_run in RNASEQ_EBI class.

	
	1.4.6:
	
	
	NEWS:
	
	RNASEQ analysis REST API included (http://www.ebi.ac.uk/~rpetry/geteam/rnaseq/apispec.pdf)

	
	1.4.5:
	
	
	BUG:
	
	Fixes a python3 wrong import

	
	1.4.4:
	
	
	CHANGES:
	
	Uniprot: update valid columns

	https://github.com/cokelaer/bioservices/pull/35 with biocarta module updates

	
	BUGS:
	
	Fix a test in test_eutils

	Fix KEGG parser https://github.com/cokelaer/bioservices/pull/35

	Fix Service input py2/3 compat and unset argument https://github.com/cokelaer/bioservices/pull/35

	Update biocarta: the website has changed and the code needed to be updated

	NEWS: ENA module and class added

	
	1.4.3
	
	BUG: fix typo in a draft tcga module

	
	1.4.2
	
	CHANGES: update setup dependencies.

	BUG: Typo fixed in uniprot list of valid columns #47

	
	1.4.1
	
	
	CHANGES:
	
	Renamed kegg.KEGG.info into dbinfo , which was overloaded with Logging

	Updated all documentation to check examples

	Fixed tests and notebooks

	clean and tested doctests in the documentation

	
	NEWS:
	
	Replace deprecated HGNC with the official web service from genenames.org

	
	1.4.0
	
	
	CHANGES:
	
	Fully update EUtils since WSDL is now down; implementation uses REST now.
This fixes https://github.com/cokelaer/bioservices/issues/41

	Remove the apps/taxonomy module now part of biokit.

	
	NEWS:
	
	add small XML tools to parse XML dynamically in xmltools module

	add http_delete in services.py

Revision 1.3

	1.3.8 (progress)

	CHANGES:

	cache files are now stored in the ./config/bioservices directory,
this fixes https://github.com/cokelaer/bioservices/issues/40

	1.3.7

	CHANGES

	ArrayExpress: add new 2 methods to ease the usage

	BUG FIXES

	KEGG: fix https://github.com/cokelaer/bioservices/issues/39

	1.3.6

	BUG FIXES

	
	KEGG: Fixed during the major changes described here below
	https://github.com/cokelaer/bioservices/issues/29

	CHANGES

	IntactL rename Intact class into IntactComplex

	KEGG: revisited the parsing following requests from user
https://github.com/cokelaer/bioservices/issues/30

	KEGG: remove useless function (check_dbentries)

	
	KEGG: The KEGGParser does not inherit from KEGG anymore and there is
	now a parse() method inside KEGG so user do not need to play with the
2 classes. Only KEGG is required. KEGGParser can still be used but
will not have the KEGG methods anymore

	1.3.5

	BUG FIXES:

	quickgo: fix bug https://github.com/cokelaer/bioservices/issues/22

	uniprot: add missing columns (https://github.com/cokelaer/bioservices/issues/23)

	kegg: fix parser related to reaction in the Compound data structure (https://github.com/cokelaer/bioservices/issues/27)

	NEWS

	add Intact complex web services

	1.3.4

	BUG FIXES

	CHANGES
* clinvitae: tests and doc added
* services modules: DevTools class moved to easydev

	NEWS

	add PRIDE service + test + doc

	1.3.3

	BUG FIX

	uniprot fixing a python 3 typo

	CHANGES

	pdb: add a method

	hgnc: add new class related to HGNC

	NEWS

	services.py: add a method to ease conversion of dict to json. add
attribute to limit number of requests per seconds but not yet used.

	taxonomy module: add new method in Taxon to look for a taxon identifier given a name

	NEW module ensembl completed

	NEW module clinvitae added (contribution from Patrick Short)

	1.3.2

	CHANGES:

	services: http_get and http_post now accepts all optional arguments from requests.

	services: get_headers default content is now same as urrlib2

	pdb module: more functions added

	ensembl module added with some functionalities

	1.3.1

	CHANGES:

	uniprot: multi_mapping is deprecated. mapping can now handle long queries by itself.

	services/settings:

	removed get_bioservices_env function, which is not used anymore

	move urlencode in Service class into WSDLService, which will be deprecated

	add TIMEOUT in WSDLService and REST as alias to settings.TIMEOUT so timeout
can now be used in both REST and WSDL.

	NEWS:

	readseq module added.

	BUG fixes:

	CACHING attribute had a typo

	1.3.0

	NEWS

	added REST class that uses the requests module. This class replaces
of instance of RESTservice that uses urllib2, which will be deprecated
later on. This speeds up the code significantly not only
because requests is faster but also because we now do not need trial/time
hack that was implemented inside RESTService. We also use the
requests_cache module that could be used to speed go but requires
to store cache files locally. Asynchronous requests is available but used
only in a few places for now.

	EUtils has been fully implemented excepting EPost. API may still change to
make its usage easier but functionalities are there.

	CHANGES

	update code to be python-3 compatible. There are still issues with suds/requests/gevent
but the code itself is python3 executable.

	WSDLservice now uses suds instead of SOAP package by default

	all paramters called format have been renamed frmt (format is a python
keyword)

	chembldb module and class renamed to chembl and bioservices.chembl.ChEMBL

	All classes that depends on RESTService have been updated to use the new
REST class.

	chembldb:

	get_assay_by_chemblId renamed in get_assays_by_chemblId

	renamed get_target_by_refSeqId into get_target_by_refseq

	kegg module: all Kegg strings replaced by KEGG so the kegg.Kegg class is
now kegg.KEGG

	ChEBI: getUpdatedPolymer: remove useless parameters (was failing with python3)

	Wikipathway class renamed as WikiPathways to agree with official name

	biomart now uses python3 and we had to remove the threaded_request module,
which does not seem to ba available. So, we used the new implementation
using requests but gevent is not available for python3 either so, we use
requests but without the asynchronous call. This is working for now.
Transparent for the user.

	geneprof: parameter called type and format are renamed output and frmt to
not clash with python keywords. Use REST class instead of RESTService but
should be transparent for the users.

	services do not have the checkParam method. use
devtools.check_param_in_list instead.

	BUG FIXES:

	Fixing bug #24/25 posted on assembla related to parse_kgml_pathway
second argument can now be used.

	wikipathway: findInteractions had a typo in i

Revision 1.2

	
	1.2.6:
	
	fixing bug report 22 related to KEGG.pathway2sif function that was failing.

	add option in biomart to use different host. This is to fix an issue where biomart hangs forever. This was reported by Daniel D bug report 23 on assembla.

	
	1.2.5:
	
	add try/except for pandas library.

	
	1.2.4:
	
	fixing typo in the init that fails bioservices ito be used if pkg_resources is not available.

	
	1.2.3
	
	
	updating some apps (fasta,peptides, taxon) in bioservices.apps directory
	
	Improves UniProt module by adding a dataframe export where performing a search

	added the BioDBnet service.

	added Pathway Common

	fixed UniChem: add new database identifiers and fix interpretation of the output

	
	1.2.2:
	
	NEW Service: bioservices.biodbnet.BioDBNet

	uniprot: add multi_mapping method to use mapping method on large queries and
added timeout/trials inside uniprot functions

	
	1.2.1:
	
	same as 1.2.0 but fixed missing mapping and apps directory in the distribution available on pypi

	
	1.2.0
	
	Kegg class has now an alias called KEGG

	NEW Services: bioservices.muscle.MUSCLE

	fix bug in get_fasta from uniprot class

	add aliases to quickGO to retrieve annotation

	NEW Service: bioservices.pathwaycommons.PathwayCommons

	NEW Service: bioservices.geneprof.GeneProf service

	uniprot add function to get uniprot fasta sequence

	add apps.peptides module

Revision 1.1

	
	1.1.3
	
	
	fix bug in chembldb.get_all_targets() that was failing to return the
	json/dictionary as expected.

	
	1.1.2
	
	
	add biocarta, pfam modules (and htmltools. maybe not required.)
	
	fix bug in uniprot.mapping to return list of values instead of a string
(assembla ticket 19).

	
	1.1.1:
	
	
	services.py: move print statements into loggin.warning
	
	add documentation and examples related to Galaxy/BioPython.

	uniprot mapping function now returns a dictionary instead of a list

	NEW Service : class:bioservices.hgnc.HGNC + doc + test

Revision 1.1

	
	1.1.0:
	
	
	in psicquic when performing the conversion, we now use a try/except since some fields (in rare case) may be missing
	
	add faqs in the doc + update of the README and metadata.

	fix typo in the list of uniprot mapping

	Use BeautifulSoup4 instead of 3

	add the ChEBI Web Service.

	add the UniChem Web Service.

	logging ERROR in Service when data cannot be converted to XML is now a simple warning

	kegg.conv method now returns a dictionary instead of list of tuples.

Revision 1.0

	
	1.0.4
	
	add a draft version of PDB just to be able to fetch PDB data and use it
with external tool such as PyMOL as shown in the new pymol.rst
documentation.

	add a missing docstring in uniprot + check to/fr parameters in UniProt.mapping
method.

	Fix a typo in PSICQUIC module.

	
	1.0.3
	
	
	uniprot.UniPort.search method: default value of the parameter format is now “tab”
	
	fix 1 quickgo test

	a few documentation updates in biomart/uniprot/chembldb and tutorial.

	
	1.0.2:
	
	
	add SOAPpy in the setup requirements
	
	finished ArrayExpress +doc + tests

	fixed a bug in KEGGParser.parseGene

	add methods in psicquic to parse all databases and convert to uniprot if

	possible. These methods are used to build an application provided in the
	tutorial

	add biomart + doc + test

	add onWeb method in Service class

	
	add chemspider draft
	
	complete eutils

	
	1.0.1
	
	Add miriam module

	Add arrayexpress

	
	1.0.0:
	
	First release of bioservices

Revision 0.9

	
	0.9.7:
	
	
	add new feature in KEgg module to instrospect kgml data sets
	
	add biogrid test and documentation.

	chembldb improvments

	uniprot bug fixes (search if working as expected now)

	
	0.9.6:
	
	Finalising the Kegg module

	
	0.9.5:
	
	
	add parser for all KEGG entries (enzyme, genome, pathway, …)
	
	add a show_pathway to highlight element in a pathway

	
	0.9.4:
	
	cleaning up the modules

	
	0.9.3:
	
	documentation cleanup

	fix tests

	fix a few small bugs in biomodels

	adding getattr method for all databases in kegg model

	Service class has new method call pubmed to load pubmed in browser

	
	0.9.2:
	
	uniprot search method improved

	0.9.1: fix typo in biomodel. add uniprot search method. add keggParser class

	
	0.9.0: Stable version of bioservices including the following services:
	BioModels, Kegg, Reactome, Chembl, PICR, QuickGO, Rhea, UniProt,
WSDbfetch, NCBIblast, PSICQUIC, Wikipath

Up to Revision 0.5

	0.4.9: finalise wikipathway

	0.4.8: finalise doc of half of the services.

	0.4.7: add psicquic service and carry on reactome

	0.4.6: finalise kegg module and test

	0.4.5: finalise biomodels. keff WSDL is not maintained anymore: started REST version.

	0.4.4: finalise quickgo,rhea, picr, uniprot. Update servie to use logging module.

	0.4.3: add quickgo

	0.4.2: add wsdbfetch/uniprot

	0.4.1: add wikipathways module +test .

	0.4.0: add rhea service + test. Updating the documentation.

	0.3.0: add reactome + uniprot.

	0.2.0: finalise biomodels and add picr service + test for biomdodel service..

	0.1.0: add database and kegg modules + its documentation and tests

Computation times

00:14.214 total execution time for auto_examples files:

	KEGG module example (plot_kegg_relations.py)

	00:14.214

	0.0 MB

 _static/no_image.png

_static/plus.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 BIOSERVICES: access to biological web services programmatically

 		
 Quick Start

 		
 Introduction

 		
 What methods are available for a given service

 		
 What about the output ?

 		
 UniProt service

 		
 KEGG service

 		
 QuickGO

 		
 PICR service

 		
 BioModels service

 		
 Rhea service

 		
 Other services

 		
 Tutorials

 		
 KEGG Tutorial

 		
 Introduction

 		
 Searching for an organism

 		
 Look for pathways (by name)

 		
 Look for pathway (by genes i.e., IDs or usual name)

 		
 Introspecting a pathway

 		
 Building a histogram of all relations in human pathways

 		
 Biomodels tutorial

 		
 Protein test case study

 		
 Get a unique identifier and gene names from a name

 		
 Getting the fasta sequence

 		
 Using BLAST on the sequence

 		
 Searching for relevant pathways

 		
 Searching for binary Interactions

 		
 What’s next ?

 		
 Manipulating compound identifiers

 		
 Retrieve a compound identifier from KEGG, ChEBI and ChEMBL

 		
 Mapping identifiers

 		
 Convert from KEGG ID to ChEBI (compound)

 		
 convert from KEGG ID to UniProt and vice versa (gene)

 		
 BioMart service

 		
 GeneProf tutorial

 		
 Histogram expression data

 		
 Transcription factor network of stem cells

 		
 Integrating expression data in pathways

 		
 Combining BioServices with external tools

 		
 PYMOL

 		
 BioPython

 		
 Galaxy

 		
 Developer Guide

 		
 Naming convention

 		
 Creating a service class (REST case)

 		
 Creating a service class (WSDL case)

 		
 Others

 		
 suds and client auth

 		
 How to include tests ?

 		
 Continuous integration

 		
 Gallery

 		
 NoteBooks

 		
 UniProt

 		
 BioModels

 		
 ChEMBL

 		
 Entrez/Eutils

 		
 KEGG

 		
 MUSCLE

 		
 NCBIBlast

 		
 WikiPathway

 		
 Gene Mapping

 		
 BioMart

 		
 Ensembl

 		
 Utilities

 		
 Service module (REST or WSDL)

 		
 BioServicesError

 		
 REST

 		
 Service

 		
 WSDLService

 		
 xmltools module

 		
 easyXML

 		
 readXML

 		
 Services

 		
 ArrayExpress

 		
 Biocontainers

 		
 Biocontainers

 		
 BiGG

 		
 BiGG

 		
 BioDBnet

 		
 BioDBNet

 		
 BioGrid

 		
 BioGRID

 		
 BioMart

 		
 BioMart

 		
 BioModels

 		
 BioModels

 		
 ChEBI

 		
 ChEBI

 		
 ChEMBL

 		
 ChEMBL

 		
 COG

 		
 COG

 		
 ENA

 		
 ENA

 		
 EUtils

 		
 EUtils

 		
 EUtilsParser

 		
 GeneProf

 		
 QuickGO

 		
 QuickGO

 		
 Kegg

 		
 Some terminology

 		
 KEGG Databases Names and Abbreviations

 		
 Database Entries

 		
 KEGG

 		
 KEGGParser

 		
 HGNC

 		
 HGNC

 		
 Intact (complex)

 		
 IntactComplex

 		
 MUSCLE

 		
 MUSCLE

 		
 MyGeneInfo

 		
 MyGeneInfo

 		
 NCBIblast

 		
 NCBIblast

 		
 OmniPath Commons

 		
 OmniPath

 		
 Panther

 		
 Panther

 		
 Pathway Commons

 		
 PathwayCommons

 		
 PDB/PDBe modules

 		
 PDB

 		
 PDBe

 		
 PRIDE module

 		
 PRIDE

 		
 PSICQUIC

 		
 About queries

 		
 About the MITAB output

 		
 PSICQUIC

 		
 Rhea

 		
 Rhea

 		
 Reactome

 		
 Reactome

 		
 Readseq

 		
 Seqret

 		
 UniChem

 		
 UniChem

 		
 UniProt

 		
 UniProt

 		
 DBFetch

 		
 DBFetch

 		
 Wikipathway

 		
 WikiPathways

 		
 Applications and extra tools

 		
 Peptides

 		
 Peptides

 		
 FASTA

 		
 FASTA

 		
 MultiFASTA

 		
 References to BioServices on the Web

 		
 FAQS

 		
 General Errors

 		
 Installation issues

 		
 ValueError: unknown locale: UTF-8 under Mac OS X 10.7 - Lion

 		
 General questions

 		
 How can I figure out the taxonomy identifier of the mouse ?

 		
 How to convert ID from one database to another ?

 		
 Specific Usage

 		
 Why my uniprot request takes forever ?

 		
 KEGG service

 		
 Interest of the BioServices classes REST and WSDL ?

 		
 What is the difference between GET and POST

 		
 Contributors

references-4.hires.png
10 sapiens
305 taurus
musculus
lorvegicus
cerevisiae
oglodytes
 familiaris
)amo rerlo

allus
S t?] liana

yza sativa
|s ele ans

ano ster
iae

rcu osls
=r|chL)a (i0|l
s caballus
Sus scrofa
persicum
ichocarpa -
us subtilis
iCa napus -
:reIIa zeae -
magna -

a [ciparum -
vibrioides -
is vinifera -
ycine max -
a vulgaris -
m vulgare -
Ovis aries
um woodil

0

200

400

600

800

1000

1200

1400

references-4.png
o apins

e
anio reric
I gotlus
5 thdiiana
Faitgan
Feamays
anogastty

SSscrola
ehbea)

Ui Subths
r€fla 2cac
aiciparum
KRR
cvigars
Btz arics

M wosd

200

00

00

1000

1200

1400

references-1.hires.png
100 4

200 A

300 A

400 -

Btatehda Caom

Gljeogn P

0

200

400

600 800 1000 1200 1400 1600

references-1.png
100

200

300

200 400 0 800 1000 1200 1400 1600

references-5.hires.png
1.0

0.8

0.6

0.4

0.2

0.0

200

300

400

500

600

references-5.png
10

08

06

04

02

00

200

400

_images/references-1.png
100

200

300

200 400 0 800 1000 1200 1400 1600

_images/references-4.png
o apins

e
anio reric
I gotlus
5 thdiiana
Faitgan
Feamays
anogastty

SSscrola
ehbea)

Ui Subths
r€fla 2cac
aiciparum
KRR
cvigars
Btz arics

M wosd

200

00

00

1000

1200

1400

_images/galaxy.png
Galaxy - Mozilla Firefox

File Edit View History Bookmarks Baow Project Tools Help

< u_smu\ar uﬁzukelaer uC’JHuwtu ubzom\ uapythun' HQHPNVDR ui[PLFMrz u:jz Combi u:jampymu 12.3. Pro, u-_.'Galaxy uzsamxy X“Bhnuer + v
€ ill (8 1270018080100¢ B G (B now toclose s socket R
[EJmy sitesv EJOpenAleav [Jothersv | [Ejdjangov [EJPythonv [ifeedsv [Jmediav [Jalgorithmsv [JCAMBRIDGEY [JRlanguagev [JEBIY EJCNOv [JGRAPHY »
@pisable~ & Cookies¥ 2 €SSV [JFormsv [@Images¥ @ Information™ [[Miscellaneous™ /7 Outline¥ 4 Resize¥ K Tools¥ [View Source |1l Options™ v 00

Analyze Data Usin

. History fs N -)
Get FASTA (version 1.1.0)

search tools Q ’ Unnamed history
UniProt ID: 5.4 KB
Get Data P43403
= Get FASTA from UniProt via Provide a valid UniProt Entry (e.g. P43403) 14: Get FASTA oW/
Bioservices

1 sequences
= Upload File from your computer format: fasta, database: 2

@O0 <

= UCSC Main table browser

m UCSC Test table browser Fetch a FASTA file using UniProt via BioServices. >Sp|P43403| ZAP70_HUMAN Tyrosine-protein

Simply provide a valid Uniprot Entry (e.g., P43403) MPDP AAHLPFFYGSTSRAEAEEHLKLAGMADGLFLLRQC
= UCSC Archaea table browser

TERQLNGTYATAGGKAHCGP AELCEFYSROPDGLPCNLR
= BX table browser 3
AMVRDYVRQTWKLEGEAL EQATISQAPQVEKL TATTAHE

= EBI SRA ENA SRA AQTDGKFLLRPRKEQGTYALSLIYGKTVYHYLISQDKAG

= Get Microbial Data LKADGLIYCLKEACPNSSASNASGAAAPTLPAHPSTLTH
. I TR— 5
= BioMart Central server
= Ti Mart Tact cansar [~
% Find: | PKC < Previous > Next - Highlight all [Match case

Ov x # 0® o

_images/pymol.png

_images/sphx_glr_plot_kegg_relations_thumb.png
number ofrelaions per pathways

rumber of relations

_images/math/211caebd76d0f3df33d0217cc83c76657379b906.png
Annotation

_images/references-5.png
10

08

06

04

02

00

200

400

_images/sphx_glr_plot_kegg_relations_001.png
number of relations per pathways

2.00

175

150

100 150 200
number of relations

_images/bioservices2_logo_256.png

_static/broken_example.png

_static/bioservices2_256.png
2O}

BioServices

_static/bioservices2_logo_256.png

_images/math/c41ea03453d763224ea5df1072e0aef9396fb910.png
1 <z <500

